首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Using Cu(II), Mn(II) or Co(II) salt and the flexible ligands, N-[(4-carboxyphenyl)-sulfonyl]glycine (H3L1) and N-[(3-carboxyphenyl)-sulfonyl]glycine (H3L2), a series of new coordination polymers, [Mn(phen)(H2O)4][HL1] (1), [Co3(L1)2(bipy)3(H2O)6]n·8nH2O (2), [Cu4(L1)2(OH)2(bipy)4]n·12nH2O (3), [Na(H2L1)(H2O)]n (4), [Mn2(HL2)2(dpe)3(H2O)2]n·ndpe (5), (phen = 1,10-phenanthroline, bipy = 4,4′-bipyridine, dpe = 1,2-di(4-pyridyl)ethylene), varying from 0D to 3D, have been synthesized and structurally characterized. Compound 1 has a [Mn(phen)(H2O)4]2+ cation and a HL12− anion. Compound 2 features a new 1D triple chain, based on octahedral cobalt atoms bridged by bipy molecules and terminally coordinated by two H3L1 ligands. Compound 3 has a 2D layered structure, constructed from new alternating chains where H3L1, hydroxyl and water molecules simultaneously act as bridging ligands. Compound 4 possesses a bilayer structure in which two adjacent layers are pillared by H3L1 ligands into a 2D bilayer network. Compound 5 is a unique 3D coordination polymer in which each Mn center binds two trans-located dpe molecules. The thermal stability as well as magnetic properties of 5 was also studied. This work and our previous work indicate that the positional isomer of the anionic N-[(carboxyphenyl)-sulfonyl]glycine is important in the construction of these network structures, which are also significantly regulated by the metal centers.  相似文献   

2.
The thermal decomposition of Co(II), Ni(II) and Cu(II) complexes has been studied using thermogravimetry (TG) and differential TG (DTG). The complexes have been characterized by IR spectroscopy. The results reveal that the decomposition of these complexes is accompanied by the formation of metal acetate as an intermediate fragments. On the basis of the applicability of a non-isothermal kinetic equations, it was demonstrated that the stability of the complexes follows the order Co(II)>Cu(II)>Ni(II). These stably correspond to the strength of chelation between the metal ions and the primary and secondary ligands. A possible mechanism of the thermal decomposition of the complexes is suggested.  相似文献   

3.
Palladium(0)/copper iodide catalyzed Sonogashira cross-coupling of 2-aryl-3-iodo-4-(phenylamino)quinolines with terminal alkynes afforded series of 1,2,4-trisubstituted 1H-pyrrolo[3,2-c]quinolines in a single-step operation. Conversely, the 4-(N,N-allylphenylamino)-2-aryl-3-iodoquinoline derivatives were found to undergo PdCl2(PPh3)2/CuI catalyzed intramolecular Heck reaction to yield the corresponding 1,3,4-trisubstituted 1H-pyrrolo[3,2-c]quinolines.  相似文献   

4.
5.
The triphenyltin(IV) complexes of 4-[((E)-1-{2-hydroxy-5-[(E)-2-(2-carboxyphenyl)-1-diazenyl]phenyl}methylidene)amino]aryls (aryls = 4-CH3, 4-Br, 4-Cl, 4-OCH3) have been synthesized and characterized by 1H-, 13C-, 119Sn-NMR, ESI mass spectrometry, IR and 119mSn Mössbauer spectroscopic techniques in combination with elemental analysis. The crystal structures of a representative carboxylate ligand (aryl = 4-CH3) and three Sn complexes, viz., polymeric (Ph3Sn[O2CC6H4{NN(C6H3-4-OH(C(H)NC6H4X-4))}-o])n (X = Me (1) and Br (2)) and dimeric (Ph3Sn[O2CC6H4{NN(C6H3-4-OH(C(H)NC6H4X-4))}-o])2 (X = OMe (4)) complexes are reported. The coordination environment in each complex is trigonal bipyramidal trans-Ph3SnO2. A single zwitterionic carboxylate ligand bridges adjacent Sn atoms via the carboxylate and phenoxide O atoms.  相似文献   

6.
Two new coordination polymers, [Ag2(barb)(pipet)]n (1) and {Na3[Ag2(barb)2](pippr)·2H2O}n (2) (where H2barb, pipet and Hpippr are 5,5-diethylbarbituric acid, N-piperidineethanol and 1,3-bis(4-piperidyl)propane, respectively) have been synthesized and characterized by elemental analysis, IR, thermal analysis and X-ray single-crystal diffraction techniques. Silver(I) ions in complexes 1 and 2 are bridged by barb dianions, leading to one-dimensional coordination polymers. In 1, the barb ligand acts as a tetradentate bridging ligand, while in 2 as a bidendate bridging ligand. The pipet ligand behaves as a bidentate chelating donor, whereas the pippr anion is not involved in coordination and remains as a counter-ion. The one-dimensional chains of 1 and 2 are further extended into supramolecular networks. Spectral and thermal analysis data for 1 and 2 are in agreement with the crystal structures.  相似文献   

7.
A series of CoII, NiII, and CuII complexes with trans-1-(2-pyridyl)-2-(4-pyridyl)ethylene (bpe) and various polycarboxyl co-ligands have been prepared under general condition and characterized by IR, elemental analysis, and TG-DTA techniques. Single-crystal X-ray diffraction indicates that these complexes display multifarious binuclear, 1-D, and 2-D coordination motifs in virtue of the bridging polycarboxyl building blocks, in which the bpe ligand uniformly adopts the unidentate coordination by using its 4-pyridyl group. Remarkably, higher-dimensional extended networks are further formed with the aid of additional secondary interactions based on bpe (such as H-bonding and ππ stacking). These results demonstrate that bpe is a reliable bifunctional tecton to construct diverse supramolecular architectures via synergistic effect of multiple intermolecular interactions.  相似文献   

8.
The extracellular heme-thiolate peroxygenase of Agrocybe aegerita catalyzed the H2O2-dependent hydroxylation of 2-phenoxypropionic acid (POPA) to give the herbicide precursor 2-(4-hydroxyphenoxy)propionic acid (HPOPA). The reaction proceeded regioselectively with an isomeric purity near 98%, and yielded the desired R-isomer of HPOPA with an enantiomeric excess of 60%. 18O-labeling experiments showed that the phenolic hydroxyl in HPOPA originated from H2O2, which establishes that the reaction is mechanistically a peroxygenation. Our results raise the possibility that fungal peroxygenases may be useful for a variety of organic oxidations.  相似文献   

9.
In this article, ten new coordination frameworks, namely, [Ni(H2O)6]·(L3) (1), [Zn(L3)(H2O)3] (2), [Cd(L3)(H2O)3]·5.25H2O (3), [Ag(L1)(H2O)]·0.5(L3) (4), [Ni(L3)(L1)] (5), [Zn(L3)(L1)0.5]·H2O (6), [Cd(L3)(L1)0.5(H2O)] (7), [CoCl(L3)0.5(L1)0.5] (8), [ZnCl(L3)0.5(L2)0.5] (9), and [CoCl(L3)0.5(L2)0.5] (10), where L1 = 1,1′-(1,4)-butanediyl)bis(imidazole), L2 = 1,1′-(1,4-butanediyl)bis(2-ethylbenzimidazole) and H2L3 = 3,3′-(p-xylylenediamino)bis(benzoic acid), have been synthesized by varying the metal centers and nitrogen-containing secondary ligands. These structures have been determined by single-crystal X-ray diffraction analyses, elemental analyses and IR spectra. In 1, the L3 anion is not coordinated to the Ni(II) center as a free ligand. The Ni(II) ion is coordinated by water molecules to form the cationic [Ni(H2O)6]2+ complex. The hydrogen bonds between L3 anions and [Ni(H2O)6]2+ cations result in a three-dimensional (3D) supramolecular structure of 1. In compounds 2 and 3, the metal centers are linked by the organic L3 anions to generate 1D infinite chain structures, respectively. The hydrogen bonds between carboxylate oxygen atoms and water molecules lead the structures of 2 and 3 to form 3D supramolecular structures. In 4, the L3 anion is not coordinated to the Ag(I) center, while the L1 ligands bridge adjacent Ag(I) centers to give 1D Ag-L1 chains. The hydrogen bonds among neighboring L3 anions form infinite 2D honeycomb-like layers, in the middle of which there exist large windows. Then, 1D Ag-L1 chains thread in the large windows of the 2D layer network, giving a 3D polythreaded structure. Considering the hydrogen bonds between the water molecules and L3 anions, the structure is further linked into a 3D supramolecular structure. Compounds 5 and 7 were synthesized through their parent compounds 1 and 3, respectively, while 6 and 9 were obtained by their parent compound 2. In 5, the L3 anions and L1 ligands connect the Ni(II) atoms to give a 3D 3-fold interpenetrating dimondoid topology. Compound 6 exhibits a 3D three-fold interpenetrating α-Po network structure formed by L1 ligands connecting Zn-L3 sheets, while compound 7 shows a 2D (4,4) network topology with the L1 ligands connecting the Cd-L3 double chains. In compound 8, the L1 ligands linked Co-L3 chains into a 2D layer structure. Two mutual 2D layers interpenetrated in an inclined mode to generate a unique 3D architecture of 8. Compounds 9 and 10 display the same 2D layer structures with (4,4) network topologies. The effects of the N-containing ligands and the metal ions on the structures of the complexes 1-10 were discussed. In addition, the luminescent properties of compounds 2-4, 6, 7 and 9 were also investigated.  相似文献   

10.
A convenient synthetic approach to 2-[1-(dialkylamino)alkyl]-4H-3,1-benzoxazin-4-ones has been developed. Thus, 1,1-dimethylethyl 2-isocyanobenzoates, which can be readily prepared from 2-nitrobenzoic acids by a simple four-step sequence, react with N,N-dialkyliminium iodides without using any catalysts under mild conditions to give the desired products in generally fair-to-good yields.  相似文献   

11.
Substituted 2-(N-alkylamino)-pyrimidin-4-ones were synthesized from N-alkyl β-amino acid esters starting with guanidinylation using Pbf-activated thiourea. The six-membered pyrimidinones were obtained in good yields via intramolecular cyclization during TFA cleavage of the Pbf protecting group.  相似文献   

12.
The reactions of Mo2(O2CCH3)4 with different equivalents of N,N′-bis(pyrimidine-2-yl)formamidine (HL1) and N-(2-pyrimidinyl)formamide (HL2) afforded dimolybdenum complexes of the types Mo2(O2CCH3)(L1)2(L2) (1) trans-Mo2(L1)2(L2)2 (2) cis-Mo2(L1)2(L2)2 (3) and Mo2(L2)4 (4). Their UV–Vis and NMR spectra have been recorded and their structures determined by X-ray crystallography. Complexes 2 and 3 establish the first pair of trans and cis forms of dimolybdenum complexes containing formamidinate ligands. The L1 ligands in 13 are bridged to the metal centers through two central amine nitrogen atoms, while the L2 ligands in 14 are bridged to the metal centers via one pyrimidyl nitrogen atom and the amine nitrogen atom. The Mo–Mo distances of complexes 1 [2.0951(17) Å], 2 [2.103(1) Å] and 3 [2.1017(3) Å], which contain both Mo?N and Mo?O axial interactions, are slightly longer than those of complex 4 [2.0826(12)–2.0866(10) Å] which has only Mo?O interactions.  相似文献   

13.
The synthesis and characterization of binuclear ruthenium complexes [{(η6-C6H6)Ru}2(μ-bsh)2] (1), [{(η6-C10H14)Ru}2(μ-bsh)2] (2), [{(η6-C6Me6)Ru}2(μ-bsh)2] (3), and rhodium complex [{(η5-C5Me5)RhCl}2(μ-bsh)] (4) (bsh=N,N-bis(salicylidine)-hydrazine dianion) are reported. The complexes have been fully characterized by analytical and spectral techniques and unusual coordination mode of the ligand H2bsh has been confirmed by single crystal X-ray analysis of the complex 2. Structural data revealed extensive inter- and intra-molecular C-H?O and C-H?π interactions and involvement of methyl and isopropyl hydrogen from the p-cymene in hydrogen bonding.  相似文献   

14.
Traditional CE sample stacking is ineffective for samples containing a high concentration of salt and/or buffer. We recently reported the use of a discontinuous buffer system for protein enrichment that was applicable to samples containing millimolar concentrations of salt. In this paper, the technique was investigated for samples containing unwanted buffering ions, including TRIS, MES, and phosphate, which are commonly used in biological sample preparation. Using myoglobin as a model protein, the results demonstrated that background buffering ions can be effectively removed or separated from the enriched protein. The key is to use either the acid or the base of the discontinuous buffers to adjust the pH of the sample, such that the net charge of the unwanted buffering ions is near-zero. The successful isolation and enrichment of myoglobin from up to 100 mM TRIS and 50 mM MES was demonstrated. The enrichment factors remained at approximately 200. Removal of phosphate was more challenging because its net charge was anionic in both the acid and the base of the discontinuous buffers. The enrichment was only achievable up to 30 mM of sodium phosphate, the enrichment factors observed were significantly lower, below 50, and the process was delayed due to the higher ionic strength resulted from phosphate. The migration of phosphate during enrichment was studied using a UV-absorbing analogue, phenyl phosphate. In addition, Simul 5.0 was used to simulate the discontinuous buffers in the absence and presence of TRIS and phosphate. The stimulated TRIS and phosphate concentration profiles were generally in agreement with the experimental results. The simulation also provided a better understanding on the effect of phosphate on the formation of the pH junction.  相似文献   

15.
The syntheses and characterization of novel ruthenium(II) complexes containing bis(3,5-dimethylpyrazol-1-yl)acetato (bdmpza), a new class of scorpionate ligands, are reported herein. [RuCl(bdmpza)(η4-1,5-cyclooctadiene)] (1) was found to be a versatile precursor to synthesize a wide range of new ruthenium(II) complexes with the bdmpza ligand. The treatment of 1 with pyridine (py), diphenylphosphinoethane (dppe), 2,2′-bipyridyl (bpy), 1,10-phenanethroline (phen), or bispicolylamine (Hbpica) in refluxing N,N-dimethylformamide resulted in displacement of the 1,5-cyclooctadiene ligand to afford [RuCl(bdmpza)(py)2] (2), [RuCl(bdmpza)(dppe)] (3), [RuCl(bdmpza)(bpy)] (4), [RuCl(bdmpza)(phen)] (5), and [Ru(bdmpza)(Hbpica)]Cl (6Cl) in good yields, respectively. The structures of 14, and 6 were determined by X-ray structure analyses.  相似文献   

16.
Lithium, sodium and potassium N-(trifluoromethylsulfonyl)trifluoromethanesulfinimidates were obtained by the reaction of the corresponding sulfinimidoyl chloride with alkali metal trimethylsilanolates. The potassium and sodium salts were converted to the free acid, having predominantly the amidic tautomeric structure, CF3S(O)NHSO2CF3, by treatment with concentrated H2SO4 or with H+-cationite.  相似文献   

17.
Reaction of Ln(NO3)3·6H2O with H2L [H2L=N,N′-bis(salicylidene)propane-1,2-diamine] gives rise to five new coordination polymers, viz. [Pr(H2L)(NO3)3(MeOH)]n (1) and [Ln(H2L)1.5(NO3)3]n [Ln=La (2), Eu (3), Sm (4) and Gd (5)]. Crystal structural analysis reveals that H2L effectively functions as a bridging ligand forming one-dimensional (1D) chain and two-dimensional (2D) open-framework polymers. Solid-state fluorescence spectra of 3 and 4 exhibit typical red fluorescence of Eu(III) and Sm(III) ions at room temperature while 2 emits blue fluorescence of ligand H2L. The lowest triplet level of ligand H2L was calculated on the basis of the phosphorescence spectrum of 5. The energy transfer mechanisms in the lanthanide polymers were described and discussed.  相似文献   

18.
Reactions of nBu2SnCl(L1) (1), where L1 = acid residue of 5-[(E)-2-(4-methoxyphenyl)-1-diazenyl]quinolin-8-ol, with various substituted benzoic acids in refluxing toluene, in the presence of triethylamine, yielded dimeric mixed ligand di-n-butyltin(IV) complexes of composition [nBu2Sn(L1)(L2-6)]2 where L2 = benzene carboxylate (2), L3 = 2-[(E)-2-(2-hydroxy-5-methylphenyl)-1-diazenyl]benzoate (3), L4 = 5-[(E)-2-(4-methylphenyl)-1-diazenyl]-2-hydroxybenzoate (4), L5 = 2-{(E)-4-hydroxy-3-[(E)-4-chlorophenyliminomethyl]-phenyldiazenyl}benzoate (5) and L6 = 2-[(E)-(3-formyl-4-hydroxyphenyl)-diazenyl]benzoate (6). All complexes (1-6) have been characterized by elemental analyses, IR, 1H, 13C and 117Sn NMR and 119Sn Mössbauer spectroscopy and their structures were determined by X-ray crystallography, complemented by 117Sn CP-MAS NMR spectroscopy studies in the solid state. The crystal structure of 1 reveals a distorted trigonal bipyramidal coordination geometry around the Sn-atom where the Cl- and N-atoms of ligand L1 occupy the axial positions. In complexes 2-5, the molecules are centrosymmetric dimers in which the Sn-atoms are connected by asymmetric μ-O bridges through the quinoline O-atom to give an Sn2O2 core. The differences in the Sn-O bond lengths within the bridge range from 0.28 to 0.48 Å, with the longer of the Sn-O distances being in the range 2.56-2.68 Å and the most symmetrical bridge being in 5. The carboxylate group is almost symmetrically bidentate coordinated to the tin atom in 5 (Sn-O distances of 2.327(2) and 2.441(2) Å), unlike the other complexes in which the distance of the carboxylate carbonyl O-atom from the tin atom is in the range 2.92-3.03 Å. The structure of 5 displays a more regular pentagonal bipyramidal coordination geometry about each tin atom than in 2-4. In contrast, the centrosymmetric dimeric structure of 6 involves asymmetric carboxylate bridges, resulting in a different Sn2C2O4 motif. The Sn-O bond lengths in the bridge differ by about 0.6 Å, with the longer distance involving the carboxylate carbonyl O-atom (2.683(2) and 2.798(2) Å for two molecules in the asymmetric unit). The carboxylate carbonyl O-atom has a second, even longer intramolecular contact to the Sn-atom to which the carboxylate group is primarily coordinated, with these Sn?O distances being as high as 3.085(2) and 2.898(2) Å. If the secondary interactions are considered, all the di-n-butyltin(IV) complexes (2-6) display a distorted pentagonal bipyramidal arrangement about each tin atom in which the n-butyl groups occupy the axial positions.  相似文献   

19.
The Schiff base compound, N,N′-bis(trifluoromethylbenzylidene)ethylenediamine (C18H14F6N2) (1), CF3C6H4CHNCH2CH2NCHC6H4CF3 has been synthesized by adding a solution of ethylenediammine (en), 0.1 mmol in chloroform to 4-(trifluoromethyl)-benzaldehyde, CF3C6H4CHO (0.2 mmol) and the product was crystallized in ethanol with the mp, 109.2 °C and 75% yield. The crystal structure was investigated by a single-crystal X-ray diffraction study at 150 K. The compound crystallizes in monoclinic space group, P21/c with a = 9.295(3), b = 5.976(5), c = 15.204(9) Å and α = 90°, β = 96.56(5)° and γ = 90°. The crystal structure is stabilized by intermolecular CH · · · F hydrogen bonds. The asymmetric unit contains only one-half of the molecule related to the center of symmetry coinciding with C(1)-C(1′) and as a whole, the title molecule is in the staggered conformation. The phenyl rings and the CN imine bonds are co-planar. The infrared spectrum showed a sharp peak at 1640 cm−1 which is typical of the conjugated CN stretching and strong peaks at 800-1400 cm−1 regions are due to the C-C and C-H stretching modes. Electronic absorption spectra exhibits strong absorption in the UV region (240 nm wavelength) which have been ascribed to , and electronic transitions. The 1H NMR spectra showed three distinct peaks at 2.5, 7.8 and 8.5 ppm which are assigned based on the splitting of resonance signals and are clearly confirmed by the X-ray molecular structure. The aromatic protons appear at about 7.8 ppm and the imine protons at 8.5 ppm. The sharp singlet at about 3.95 ppm is assigned to the CH2-CH2 protons. Mass spectra of the titled compound showed the molecular ion peak at m/e 372 (M+), and fragments at m/e 353 (M-F), 342 (M-2F), 200 (M-CF3C6H4CHN), 186 (M-CF3C6H4CHNCH2).  相似文献   

20.
The C,N-chelated tri and diorganotin(IV) chlorides react with both protic mineral acids and carboxylic acids. The nitrogen atom of the LCN ligand (where LCN is 2-(dimethylaminomethyl)phenyl) is thus quarternized - protonated and new Sn-X bond (X = Cl, Br, I or the remainder of the starting acid used) is simultaneously formed. The set of zwitterionic tri and diorganostannates containing protonated 2-(dimethylaminomethyl)phenyl-moiety was prepared and structurally characterized by multinuclear NMR spectroscopy and XRD techniques. In all these cases, the intramolecular N-H?X bond is present in the molecule. Despite the central tin atom remains five-coordinated (except for the [HLCNH]+[(n-Bu)2SnCl(NO3)2]) and reveals a distorted trigonal bipyramidal geometry, the 119Sn NMR chemical shift values of these zwitterionic stannates are somewhat shifted to the higher field than corresponding starting C,N-chelated tri and diorganotin(IV) halides. Reactions of C,N-chelated organotin(IV) halides with various Lewis acids are also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号