首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Subsolidus phase relations have been determined for the Bi-Mn-Nb-O system in air (750-900 °C). Phases containing Mn2+, Mn3+, and Mn4+ were all observed. Ternary compound formation was limited to pyrochlore (A2B2O6O′), which formed a substantial solid solution region at Bi-deficient stoichiometries (relative to Bi2(Mn,Nb)2O7) suggesting that ≈14-30% of the A-sites are occupied by Mn (likely Mn2+). X-ray powder diffraction data confirmed that all Bi-Mn-Nb-O pyrochlores form with structural displacements, as found for the analogous pyrochlores with Mn replaced by Zn, Fe, or Co. A structural refinement of the pyrochlore 0.4000:0.3000:0.3000 Bi2O3:Mn2Ox:Nb2O5 using neutron powder diffraction data is reported with the A and O′ atoms displaced (0.36 and 0.33 Å, respectively) from ideal positions to 96g sites, and with Mn2+ on A-sites and Mn3+ on B-sites (Bi1.6Mn2+0.4(Mn3+0.8Nb1.2)O7, (?227), a=10.478(1) Å); evidence of A or O′ vacancies was not found. The displacive disorder is crystallographically analogous to that reported for Bi1.5Zn0.92Nb1.5O6.92, which has a similar concentration of small B-type ions on the A-sites. EELS spectra for this pyrochlore were consistent with an Mn oxidation between 2+ and 3+. Bi-Mn-Nb-O pyrochlores exhibited overall paramagnetic behavior with negative Curie-Weiss temperature intercepts, slight superparamagnetic effects, and depressed observed moments compared to high-spin, spin-only values. At 300 K and 1 MHz the relative dielectric permittivity of Bi1.600Mn1.200Nb1.200O7 was ≈128 with tan δ=0.05; however, at lower frequencies the sample was conductive which is consistent with the presence of mixed-valent Mn. Low-temperature dielectric relaxation such as that observed for Bi1.5Zn0.92Nb1.5O6.92 and other bismuth-based pyrochlores was not observed. Bi-Mn-Nb-O pyrochlores were readily obtained as single crystals and also as textured thin films using pulsed laser deposition.  相似文献   

2.
Electron diffraction is used to investigate the large amplitude displacive disorder characteristic of the Bi2(MIIINbV)O7 Bi-pyrochlores, Bi2InNbO7 and Bi2FeNbO7, as well as of their A site substituted Bi1.5Y0.5InNbO7 and Bi1.5Y0.5FeNbO7 variants. Highly structured diffuse distributions in the form of {110}* sheets of diffuse intensity perpendicular to the six 〈110〉 directions of real space along with 〈111〉* rods of diffuse intensity perpendicular to the four {111} real space planes are observed. The existence of this structured diffuse scattering is interpreted in terms of large amplitude, β-cristobalite-type tetrahedral rotations of the O′A2 tetrahedral framework sub-structure of the ideal pyrochlore structure type. Bond valence sum calculations are used to understand the local crystal chemistry responsible for such displacive disorder. The frequency-dependent dielectric properties of Bi2InNbO7 and Bi2FeNbO7 are also investigated along with the effect upon them of A site doping with Y.  相似文献   

3.
Single-phase pyrochlore-type specimens of Bi1.5Zn0.92Nb1.5O6.92 were studied using combined electron, X-ray and neutron powder diffraction techniques. Rietveld refinements using neutron powder diffraction data confirmed an average pyrochlore structure A2B2O6O′ (Fd&3macr;m, a=10.5616(1) Å) with both Bi and Zn mixed on the A-sites. However, refinements revealed significant local deviations from the ideal pyrochlore arrangement which were caused by apparent displacive disorder on both the A and O′ sites. The best fit was obtained with a disordered model in which the A-cations were randomly displaced by ∼0.39 Å from the ideal eight-fold coordinated positions. The displacements occur along the six 〈112〉 directions perpendicular to the O′-A-O′ links. In addition, the O′ ions were randomly displaced by ∼0.46 Å along all 12 〈110〉 directions. Crystal-chemical considerations suggest the existence of short-range correlations between the O′ displacements and both the occupancy of the A-sites (i.e., Bi or Zn) and the directions of the A-cation displacements. The combined A-cation and O′ displacements change the coordination sphere of the A-cations from 8 to (5+3); the resulting coordination environment of the A-cations bears similarities to that of the (5+1)coordinated Zn in zirconolite-like Bi2Zn2/3Nb4/3O7. The observed displacive disorder in the A2O′ network of the Bi1.5Zn0.92Nb1.5O6.92 structure involves atoms associated with the lowest-frequency vibrational bending mode, and is likely responsible for both the high dielectric constant and the dielectric relaxation reported for this compound.  相似文献   

4.
The composition, dielectric properties and inherent displacive disorder of a Bi-based, misplaced-displacive cubic pyrochlore phase found in two ternary Bi2O3M2+ONb2O5 (M=Ni and Mg) systems has been investigated. The dielectric permittivities (up to 1 MHz) of (Bi0.825Ni0.1250.05)2(Ni0.25Nb0.75)2O7 and (Bi0.835Mg0.0850.08)2(Mg0.235Nb0.765)2O7 at room temperature are found to be 116 and 151, respectively, while the dielectric loss tangents are 0.00065 and 0.00042, respectively, at 100 kHz. A highly structured characteristic diffuse intensity distribution apparent in electron diffraction is reported in both cases and partially interpreted in terms of large amplitude, β-cristobalite-type tetrahedral rotations of the O’A2 tetrahedral framework sub-structure of the ideal pyrochlore structure type. Bond valence sum calculations are used to investigate the local crystal chemistry responsible for this displacive disorder.  相似文献   

5.
Subsolidus phase relations have been determined for the Bi2O3-Fe2O3-Nb2O5 system in air (900-1075 °C). Three new ternary phases were observed—Bi3Fe0.5Nb1.5O9 with an Aurivillius-type structure, and two phases with approximate stoichiometries Bi17Fe2Nb31O106 and Bi17Fe3Nb30O105 that appear to be structurally related to Bi8Nb18O57. The fourth ternary phase found in this system is pyrochlore (A2B2O6O′), which forms an extensive solid solution region at Bi-deficient stoichiometries (relative to Bi2FeNbO7) suggesting that ≈4-15% of the A-sites are occupied by Fe3+. X-ray powder diffraction data confirmed that all Bi-Fe-Nb-O pyrochlores form with positional displacements, as found for analogous pyrochlores with Zn, Mn, or Co instead of Fe. A structural refinement of the pyrochlore 0.4400:0.2700:0.2900 Bi2O3:Fe2O3:Nb2O5 using neutron powder diffraction data is reported with the A cations displaced (0.43 Å) to 96g sites and O′ displaced (0.29 Å) to 32e sites (Bi1.721Fe0.190(Fe0.866Nb1.134)O7, Fdm (#227), ). This displacive model is somewhat different from that reported for Bi1.5Zn0.92Nb1.5O6.92, which exhibits twice the concentration of small B-type cations on the A-sites as the Fe system. Bi-Fe-Nb-O pyrochlores exhibited overall paramagnetic behavior with large negative Curie-Weiss temperature intercepts, slight superparamagnetic effects, and depressed observed moments compared to high-spin, spin-only values. The single-phase pyrochlore with composition Bi1.657Fe1.092Nb1.150O7 exhibited low-temperature dielectric relaxation similar to that observed for Bi1.5Zn0.92Nb1.5O6.92; at 1 MHz and 200 K the relative permittivity was 125, and above 350 K conductive effects were observed.  相似文献   

6.
Phase equilibria studies of the CaO:TiO2:Nb2O5 system confirmed the formation of six ternary phases: pyrochlore (A2B2O6O′), and five members of the (110) perovskite-slab series Can(Ti,Nb)nO3n+2, with n=4.5, 5, 6, 7, and 8. Relations in the quasibinary Ca2Nb2O7−CaTiO3 system, which contains the Can(Ti,Nb)nO3n+2 phases, were determined in detail. CaTiO3 forms solid solutions with Ca2Nb2O7 as well as CaNb2O6, resulting in a triangular single-phase perovskite region with corners CaTiO3-70Ca2Ti2O6:30Ca2Nb2O7-80CaTiO3:20CaNb2O6. A pyrochlore solid solution forms approximately along a line from 42.7:42.7:14.6 to 42.2:40.8:17.0 CaO:TiO2:Nb2O5, suggesting formulas ranging from Ca1.48Ti1.48Nb1.02O7 to Ca1.41Ti1.37Nb1.14O7 (assuming filled oxygen sites), respectively. Several compositions in the CaO:TiO2:Ta2O5 system were equilibrated to check its similarity to the niobia system in the pyrochlore region, which was confirmed. Structural refinements of the pyrochlores Ca1.46Ti1.38Nb1.11O7 and Ca1.51Ti1.32V0.04Ta1.10O7 using single-crystal X-ray diffraction data are reported (Fd3m (#227), a=10.2301(2) Å (Nb), a=10.2383(2) Å (Ta)), with Ti mixing on the A-type Ca sites as well as the octahedral B-type sites. Identical displacive disorder was found for the niobate and tantalate pyrochlores: Ca occupies the ideal 16d position, but Ti is displaced 0.7 Å to partially occupy a ring of six 96g sites, thereby reducing its coordination number from eight to five (distorted trigonal bipyramidal). The O′ oxygens in both pyrochlores were displaced 0.48 Å from the ideal 8b position to a tetrahedral cluster of 32e sites. The refinement results also suggested that some of the Ti in the A-type positions may occupy distorted tetrahedra, as observed in some zirconolite-type phases. The Ca-Ti-(Nb,Ta)-O pyrochlores both exhibited dielectric relaxation similar to that observed for some Bi-containing pyrochlores, which also exhibit displacively disordered crystal structures. Observation of dielectric relaxation in the Ca-Ti-(Nb,Ta)-O pyrochlores suggests that it arises from the displacive disorder and not from the presence of polarizable lone-pair cations such as Bi3+.  相似文献   

7.
To clarify the role of A2O′ and B2O6 networks on cation displacement observed in Bi2Ti2O′O6, we used density functional theory calculations to examine the effect of sulfur substitution on the O′ and O sites on lone pair formation and resulting atomic displacement observed in Bi2Ti2O′O6. Cation displacement in bismuth titanate is suppressed only when S is substituted on the O′ site. Analysis of the electronic structure shows that S substitution on the O′ site suppresses the formation of the asymmetric p-type lone pair by modifying the Bi-anion hybridization. Lone pair formation is favored in Bi2Ti2O′S6 and the atomic displacement is larger than that observed in Bi2Ti2O′O6. This enhanced displacement is due to weaker Bi-S versus Bi-O interactions leading to significantly stronger hybridization between the Bi and O′ states in Bi2Ti2O′S6. We also induced lone pair formation in a metallic bismuth pyrochlore oxide (Bi2Ru2O′O6) by modifying the Bi-O interactions through S substitution on the B2O6 network, indicating atomic displacement on the A2O′ network may be achieved by modifying the B2O6 network.  相似文献   

8.
Bi2Ti2O7 has been synthesized using a co-precipitation route from H2O2/NH3(aq) solutions of titanium with aqueous bismuth nitrate. The stoichiometric material crystallizes into a pale yellow cubic pyrochlore phase. A powder X-ray diffraction study showed this crystallization to be very temperature sensitive, the pure phase can only be obtained within a few degrees of 470°C. Time-of-flight powder neutron diffraction studies of Bi2Ti2O7 (Space group , a=10.37949(4) Å at ambient temperature, Z=8, Rp=3.95%, Rwp=4.75%) revealed positional disorder in the bismuth site and in the O′ oxide site both at ambient temperature and at 2 K.  相似文献   

9.
The structure of the pyrochlore-type oxide Bi2InNbO7 has been investigated between room temperature and 700 °C using electron and synchrotron X-ray powder diffraction and at room temperature and 10 K using neutron diffraction methods. Bi2InNbO7 exhibits an A2B2O7 cubic pyrochlore-type average structure at all temperatures that is characterized by an apparently random mixing of the In3+ and Nb5+ cations on the octahedral B sites. The Bi cations on the eight-coordinate pyrochlore A sites are displacively disordered, presumably as a consequence of their lone pair electron configuration. Heating the sample does not alter this disorder.  相似文献   

10.
New ternary bismuth iron niobates having structures based on chemical twinning of pyrochlore are described. Bi5.67Nb10FeO35 has hexagonal symmetry, P63/mmc, , , Z=2 and Bi9.3Nb16.9Fe1.1O57.8 has rhombohedral symmetry, R-3m, , , Z=3. The structures of both phases were determined and refined to R1=0.04 using single-crystal X-ray data. They can be described as being derived from the pyrochlore structure by chemical twinning on (111)py oxygen planes. The chemical twin operation produces pairs of corner-connected hexagonal tungsten bronze (HTB) layers as in the HTB structure, so the structures may alternatively be described as pyrochlore:HTB unit-cell intergrowth structures. In the hexagonal phase the pyrochlore blocks have a width of 12 Å, whereas the rhombohedral phase has pyrochlore blocks of two widths, 6 and 12 Å, alternating with HTB blocks. It is proposed that the previously reported binary 4Bi2O3:9Nb2O5 phase has a related structure containing pyrochlore blocks all of width 6 Å. A feature of the structures is partial occupancy (∼65%) of the Bi sites and displacement of the Bi atoms from the ideal pyrochlore A sites towards the surrounding oxygen atoms, as observed in Bi-containing pyrochlores.  相似文献   

11.
The disordered structures and low temperature dielectric relaxation properties of Bi1.667Mg0.70Nb1.52O7 (BMN) and Bi1.67Ni0.75Nb1.50O7 (BNN) misplaced-displacive cubic pyrochlores found in the Bi2O3-MIIO-Nb2O5 (M=Mg, Ni) systems are reported. As for other recently reported Bi-pyrochlores, the metal ion vacancies are found to be confined to the pyrochlore A site. The B2O6 octahedral sub-structure is found to be fully occupied and well-ordered. Considerable displacive disorder, however, is found associated with the O′A2 tetrahedral sub-structure in both cases. The A-site ions were displaced from Wyckoff position 16d (, , ) to 96 h (, , ) while the O′ oxygen was shifted from position 8b (, , ) to Wyckoff position 32e (, , ). The refined displacement magnitudes off the 16d and 8b sites for the A and O′ sites were 0.408 Å/0.423 Å and 0.350 Å/0.369 Å for BMN/BNN, respectively.  相似文献   

12.
The room temperature structures as well as the temperature-dependent conductivity and dielectric properties of the A3CoNb2O9 (A=Ca2+, Sr2+ and Ba2+) triple perovskites have been carefully investigated. A constrained modulation wave approach to Rietveld structure refinement is used to determine their room temperature crystal structures. Correlations between these crystal structures and their physical properties are found. All three compounds undergo insulator to semiconductor phase transitions as a function of increasing temperature. The hexagonal Ba3CoNb2O9 compound acts as an insulator at room temperature, while the monoclinic Ca3CoNb2O9 compound is already a semiconductor at room temperature. The measured dielectric frequency characteristics of the A=Ba compound are excellent.  相似文献   

13.
Three-layer Aurivillius ceramics Bi2SrCaNb2TiO12, Bi2Sr1.5Ca0.5Nb2TiO12, Bi2Sr2Nb2TiO12, Bi2Sr1.5Ba0.5Nb2TiO12, and Bi2SrBaNb2TiO12 were formed via solid-state synthesis and their structures characterized by combined Rietveld analysis of powder X-ray and neutron diffraction data. Static disorder was observed in the form of mixed cation occupancies between the Bi and the Sr, Ca, or Ba on the A sites in the perovskite block, as well as between the Nb and Ti sites. The degree of site mixing between the Bi site in the (Bi2O2)2+ layer and the perovskite-block A site increased with increasing average A site cation radius (ACR). Bi2SrBaNb2TiO12 displayed the greatest degree of Bi-A site static disorder. Bond valence sum (BVS) calculations showed an increase in A site BVS with average A site cation radius. All compositions except Bi2SrCaNb2TiO12 had overbonded A sites and the A site BVS increased nearly linearly with lattice parameter and ACR. A preference was observed for Ca2+ to remain on the A site while Ba2+ preferred to disorder to the Bi site, indicating that the cation site mixing occurs to reduce strain between the (Bi2O2)2+ layer and the perovskite block in the structure. Unusually large Ti site BVS and thermal parameter for the equatorial oxygen in the TiO6 octahedra were observed in structural models that included full oxygen occupancy. However, excellent structure models and more reasonable BVS values were obtained by assuming oxygen vacancies in the TiO6 octahedra. AC impedance spectroscopy performed on all samples indicate that the total electrical conductivity is on the order of at 900°C.  相似文献   

14.
Preparation of two novel mixed metal oxide ceramic materials, namely magnesium neodymium tantalum oxide (Mg2NdTaO6) and magnesium lanthanum tantalum oxide (Mg2LaTaO6) by conventional solid-state reaction method is reported in this paper. The crystal structure of these new compounds, were studied by indexing the X-ray diffraction patterns, powder pattern calculation and profile fitting. They were found to have a defective cubic pyrochlore structure, with the A site being randomly occupied by Mg and La/Nd, while, Ta and Mg are randomly distributed at the B site. The formula assigned were (MgNd)(MgTa)O6 and (MgLa)(MgTa)O6. The variation of dielectric constant, dielectric loss and conductivity of sintered pellets of these materials with applied frequencies in the range of 30 Hz-1 MHz were studied at room temperature. These room temperature studies at 1 MHz gave dielectric constant values of 24.8 and 25.35; conductivity values of 7.75×10−6 and 8.27×10−6 S/m as well as dielectric loss values of 0.0055 and 0.006 for Mg2NdTaO6 and Mg2LaTaO6, respectively. These new pyrochlore compounds were found to have dielectric constant, dielectric loss and conductivity values in the range suitable for possible electronic ceramic applications.  相似文献   

15.
17O MAS NMR and XRD studies of precursor-derived Y1.6Zr0.4Ti2O7.2 and Y1.2Zr0.8Ti2O7.4 have been performed to investigate the development of local and long-range order in these materials as they evolve from a metastable amorphous state upon heating. Zirconium titanate (ZrTiO4) was also investigated to help interpret the 17O NMR spectra of the ternary compositions. Consistent with earlier studies, crystallization was observed at 800 °C to form a fluorite structure and a small amount of rutile; weak broad reflections were also observed which were ascribed to the presence of small pyrochlore-like ordered domains or particles within the fluorite phase. As the temperature was increased further, the sizes of these domains grew along with the concentration of rutile. At the highest temperature studied (1300 °C), the reflections of the thermodynamic phases, pyrochlore and zirconium titanate (ZrTiO4), dominated the XRD pattern. The 17O NMR spectra revealed a series of different peaks that were assigned to different 3- and 4-coordinate O local environments. The data were consistent with the formation of a metastable phase Y2−xZrxTi2−yZryO7+x with pyrochlore-like ordering but with Zr substitution on both cation sites of the pyrochlore structure. At low temperatures, doping on the A (Y3+) sites predominates (i.e., x>y), consistent with the fact that the pyrochlore develops out of a more disordered fluorite-like, phase. As the temperature is raised, the Zr doping on the A site decreases and the metastable phase at this temperature can now be written as Y2−xZrxTi2−yZryO7+x (i.e., x′<y′); TiO2 is also observed, consistent with this suggestion. At high temperatures, doping on the B site decreases and the resonances due to the stoichiometric pyrochlore yttrium titanate (Y2Ti2O7) dominate the NMR spectra. Weaker 17O NMR resonances due zirconium titanate (ZrTiO4) are also observed.  相似文献   

16.
This paper uses a diagnostic, highly structured diffuse intensity distribution to investigate the local crystal chemistry of (Bi1.5Zn0.5−δ)(Zn0.5Nb1.5)O7−δ (BZN) as well as Sn4+ and Ti4+, B site substituted, BZN-related pyrochlore phases. The structured diffuse distribution of the B site substituted material is found to be remarkably similar to that observed for BZN itself. In the special case of (Bi1.5Zn0.5)(Ti1.5Nb0.5)O7 (BZNT), the continuous G±〈10l〉* type diffuse streaking characteristic of BZN-related pyrochlores has virtually condensed out to give just G±〈001〉* “satellite reflections” and a P-centred, close to a superstructure phase of average pyrochlore unit cell dimensions. Bond valence sum considerations are used to investigate the local crystal chemistry of this BZNT phase and to derive a plausible model for this superstructure phase. Monte Carlo modelling is used to confirm the plausibility of the model proposed. The underlying crystal chemistry of BZN and BZN-related pyrochlores is shown to result from strong local Bi/Zn ordering rules and associated large amplitude structural relaxation.  相似文献   

17.
The crystal structure of the phase previously reported to occur at 4:9 Bi2O3:Nb2O5 has been determined using single-crystal X-ray and powder neutron diffraction (P63/mmc; a=7.4363(1) Å, c=19.7587(5) Å; Z=2). The structural study combined with phase equilibrium analyses indicate that the actual composition is Bi3.32Nb7.09O22.7. This binary compound is the end-member of a family of four phases which form along a line between it and the pyrochlore phase field in the Bi2O3:Fe2O3:Nb2O5 system. The structures are derived from the parent pyrochlore end-member by chemical twinning, and can also be described as unit-cell intergrowths of the pyrochlore and hexagonal tungsten bronze (HTB) structures. The dielectric properties of the three chemically twinned pyrochlore phases, Bi3.32Nb7.09O22.7, Bi9.3Fe1.1Nb16.9O57.8 and Bi5.67FeNb10O35, were characterized. All exhibit low-temperature, broad dielectric relaxation similar to that of the Bi-Fe-Nb-O pyrochlore. At 1 MHz and ≈175 K the observed relative permittivites were 345, 240, and 205, respectively, compared to 125 for the Bi-Fe-Nb-O pyrochlore. The higher relative permittivities observed for the chemically twinned pyrochlore derivatives are ascribed to the presence of HTB blocks in their structures: The Bi atoms located in the HTB blocks feature highly asymmetric coordination environments compared to pyrochlore, and the magnitude of the relative permittivity increases with the proportion of Bi located within the HTB portions of the structures.  相似文献   

18.
High pressure behaviour of disordered pyrochlore CsMgInF6 (Pnma, Z=4) has been studied with powder and single-crystal X-ray diffraction to 8.0 and 6.94 GPa, respectively, in diamond anvil cells at room temperature. The material is structurally stable to at least 8.0 GPa with no ordering of the In3+ and Mg2+ cations. The P-V data are fitted by a Birch-Murnaghan equation of state with the zero-pressure bulk modulus B0=33.4(3) GPa and the unit-cell volume at ambient pressure V0=603.2(4) Å3 for the first pressure derivative of the bulk modulus B′=4.00. The major contribution to the bulk compressibility arises from the changes in the coordination sphere around the Cs atoms. The effect of hydrostatic pressure on the crystal structure of CsMgInF6 is comparable to the effect of chemical pressure induced by the incorporation of ions of different sizes into the A and B sites in defect AB2+B3+F6 pyrochlores.  相似文献   

19.
The structures of the defect pyrochlores AAl0.33W1.67O6 where A=K, Rb or Cs have been investigated using X-ray and neutron powder diffraction methods as well as the ab initio modelling program VASP. The three cubic pyrochlores exhibit a non-linear increase in lattice parameter with respect to ionic radius of the A cation as a consequence of displacive disorder of the A-type cations. Solid state 27Al MAS NMR studies of this pyrochlore system reveal shifts in the δ∼21-22 ppm range that are indicative of pseudo-5 coordinate Al environments and emanate from distorted Al octahedral with one abnormally long Al-O bond. Solid state 39K, 85Rb, 87Rb and 133Cs MAS and static NMR studies reflect the local cation disorder demonstrated in the structural studies.  相似文献   

20.
The geometry of the ideal pyrochlore structure type (8A26B24X64Y, Fd3m) has been examined using a data base of 440 synthetic samples. Mean ionic radii of the cubic and octahedral cations together account for 95% of the variation in the cell edge. Nonempirical expressions for calculating the cell edge are also derived, using that the interatomic distances are functions of the cell edge and a single positional parameter, x, of the X anion. This alternative method is equally successful for calculating the cell edge, and additionally provides for the calculation of x. Comparison of calculated x values with 27 experimentally measured values indicates that the stoichiometry, x values, or bond length predicting radii are in error for 20% of these pyrochlores. For 21 observed x values judged to be most accurate, the calculated anion coordinates are within 0.009. In addition, calculated x values are given for 400 pyrochlores for which no values have been previously determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号