首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
用密度泛函理论(DFT)的B3LYP方法,在6-311G、6-311+G(d)、6-311++G(d, p) 基组水平上研究了CH3CF2O2与HO2自由基反应机理. 结果表明, CH3CF2O2与HO2自由基反应存在两条可行的通道. 通道CH3CF2O2+HO2→IM1→TS1→CH3CF2OOH+O2的活化能为77.21 kJ•mol-1,活化能较低,为主要反应通道,其产物是O2和CH3CF2OOH. 这与实验结果是一致的;而通道CH3CF2O2+HO2→IM2→TS2→IM3→TS3→IM4+IM5→IM4+TS4→IM4+OH+O2→TS5+OH+O2→CH3+CF2O+OH+O2→CH3OH+CF2O+O2的控制步骤活化能为93.42 kJ•mol-1,其产物是CH3OH、CF2O和O2. 结果表明这条通道也能发生,这与前人的实验结果一致.  相似文献   

2.
This survey begins with the photochemistry at 254 nm and 298 K in the system H2O2COO2RH, the primary objective of which is to determine the rate constants for the reaction OH + RH → H2O + R relative to the well-known rate constant for the reaction OH + CO → CO2 + H. Inherent in the scheme is that the reaction HO2+CO→OH+CO2 is negligible compared with the OH reaction, and a literature consensus gives kHO2 < 10−19 cm3 molecule−1 s−1, or some 106 less than kOH at 298 K. Theoretical calculations establish that the first stage in the HO2 reaction is the formation of a free radical intermediate HO2 + CO → HOOCO (perhydroxooxomethyl) which decomposes to yield the products, and that the rate of formation of the intermediate is equal to the rate of formation of the products. The structure of the intermediate and a reaction profile are shown.

High temperature rate data reported subsequent to the data in the consensus and theoretical calculations lead here to a recommendation that, in the range 250–800 K, kHO2 = 3.45 × 10−12T1/2 exp(1.15 × 104/T) cm3 molecule−1 s−1, the hard-sphere-collision Arrhenius modification. This yields kHO2(298) = 1.0 × 10−27 cm3 molecule−1 s−1 or some 1014 slower than kOH(298).  相似文献   


3.
The γ(HO2) was elevated with increase of Cu(II) concentrations in aqueous (NH4)2SO4 aerosol. The threshold of Cu(II) concentration was 10-3 mol/L for the dramatic increase of γ(HO2) to 0.1, suggesting sensitive γ(HO2) value to concentration of transition metal ions in aerosol.  相似文献   

4.
The mechanism of the SO2 + HO2 reaction was studied theoretically for the first time. Three product channels were revealed, namely, O2 + HOSO, O2 + HSO2, and OH + SO3. The O2 + HOSO channel dominates the reaction under combustion conditions. A five-member-ring complex [SO2–HO2] exists at the entrance of the reaction. The structure and binding energy (De and D0) of the SO2–HO2 complex have been calculated. In view of D0 = 21.2 ± 2.0 kJ mol−1, the SO2–HO2 complex should be stable at low temperature. The infrared spectra and frequency shifts were calculated for both SO2–HO2 and SO2–DO2, and compared with the available experimental data.  相似文献   

5.
Saddle point geometries and barrier heights have been calculated for the H abstraction reaction HO2(2A″)+H(2S) → H2(1Σ+g)+O2(3Σg) and the concerted H approach-O removing reaction HO2 (2A″)+H(2S) → H2O(1A1)+O(3P) by using SDCI wavefunctions with a valence double-zeta plus polarization basis set. The saddle points are found to be of Cs symmetry and the barrier heights are respectively 5.3 and 19.8 kcal by including size consistent correction. Moreoever kinetic parameters have been evaluated within the framework of the TST theory. So activation energies and the rate constants are estimated to be respectively 2.3 kcal and 0.4×109 ℓ mol−1 s−1 for the first reaction, 20.0 kcal and 5.4.10−5 ℓ mol−1 s−1 for the second. Comparison of these results with experimental determinations shows that hydrogen abstraction on HO2 is an efficient mechanism for the formation of H2 + O2, while the concerted mechanism envisaged for the formation of H2O + O is highly unlikely.  相似文献   

6.
Bo-Zhen Chen  Ming-Bao Huang   《Chemical physics》2004,300(1-3):325-334
In the present theoretical work we have explored mechanisms of dissociation reactions of the vinyl radical in the A2A″ state (C2H3 (A2A″)) and examined possible pathways for nonadiabatic dissociation of C2H3 (A2A″) into C2H2 (X1Σg+). In the calculations we used the complete active space self-consistent field (CASSCF) and multiconfiguration second-order perturbation theory (CASPT2) methods in conjunction with the cc-pVDZ and cc-pVTZ basis sets. Mechanisms for the following three dissociation channels of C2H3 in the A2A″ state were explored: (1) C2H3 (A2A″) → C2H2 (trans, 3Au) + H, (2) C2H3 (A2A″) → C2H2 (cis, 3A2) + H, and (3) C2H3 (A2A″) → H2CC (3A2) + H. The CASSCF and CASPT2 potential energy curve calculations for the C2H3 (A2A″) dissociation channels (1)–(3) indicate that there is neither transition state nor intermediate for each of the channels. At the CASPT2//CASSCF/cc-pVTZ level, the dissociation energies for channels (1)–(3) are predicted to be 84.3, 91.1, and 86.9 kcal/mol, respectively. For a recently observed nonadiabatic dissociation of C2H3 (A2A″) into C2H2 (X1Σg+) + H [J. Chem. Phys. 111 (1999) 3783], two previously suggested internal conversion (IC) pathways were examined based on our CASSCF and CASPT2 calculations. Our preliminary CASSCF and CASPT2 calculations indicate that the assumed IC pathway via the twisted C2H3 (A2A) structure might be feasible. The CASSCF/cc-pVTZ geometry optimization and frequency analysis calculations were performed for the four C2v bridge structures in the 2B2, 2A2, 2B1, and 2A1 states along the pathways of the 12A (X2A), 12A″ (A2A″), 22A″, and 22A states of C2H3, respectively, and the CASPT2//CASSCF/cc-pVTZ energetic results indicate that the assumed IC pathway, via a C2v (2A2) structure and then 2A2/2A1 surface crossing, be not feasible since at their excitation wavelengths (327.4 and 366.2 nm) the C2v (2A2) structure could not be accessed.  相似文献   

7.
Experiments were carried out to investigate the removals of SO2 and NOx from simulated lignite-burning flue gas containing SO2 (4800 ppm), NO (320 ppm) and H2O (22%) by electron beam irradiation. Removal efficiencies of SO2 and NOx were achieved to reach 97 and 88% at 70°C, and 74 and 85% at 80°C, respectively, with the dose of 10.3 kGy without NH3 leakage. The higher removal efficiencies of SO2 and NOx were observed in simulated lignite-burning flue gas than in coal-fired flue gas containing 800 ppm of SO2, 225 ppm of NO and 7.5% H2O at the same treatment condition. The higher removal efficiencies were attributed to the higher concentrations of SO2, H2O, and added NH3. Simulation calculations indicated that the higher concentrations of these components enhance the effective radical reactions to oxidize NO to form NO2 with HO2 radical, and to oxidize SO2 to form SO3 with OH radical and O2. The reactions of NOx with N and NH2 radicals to produce N2 and N2O also promote the NOx removal. By-product was determined to be the mixture of (NH4)2SO4 and NH4NO3 containing a small amount of H2SO4.  相似文献   

8.
Lamellar crystalline calcium phenylphosphonate, as anhydrous Ca(HO3PC6H5)2 and hydrated Ca(HO3PC6H5)2·2H2O compounds, were used as hosts for intercalation of polar n-alkylmonoamine molecules of the general formula CH3(CH2)nNH2 (n=0–4, 7) in water or 1,2-dichloroethane. An increase in the interlayer distance was observed. The exothermic enthalpic values for intercalation increased with the number of carbon atoms and with increasing concentration of the amines. The intercalation followed by a titration procedure in the solid/liquid interface with Ca(HO3PC6H5)2·2H2O and Ca(HO3PC6H5)2 gave the enthalpy/number of carbons correlations: ΔintH=−(1.74±0.43)–(1.30±0.13)nc and ΔintH=−(4.15±0.15)–(1.07±0.03)nc, for water and 1,2-dichloroethane, respectively. A similar correlation ΔintH=−(4.27±0.80)–(1.85±0.21)nc was obtained in water by using the ampoule breaking procedure for Ca(HO3PC6H5)2·2H2O. The increase in exothermic enthalpic values with the increase in n-aliphatic carbon atoms is more pronounced for the anhydrous compound and also when using the ampoule breaking procedure. The Gibbs free energies are negative. Positive entropic values favor intercalation in these systems.  相似文献   

9.
用从头算和MP2方法求得亚硝酸甲酯的基态、第一和第二激发态解离为CH3O和NO自由基的解离能分別为238.14、68.99和-183.97kJ/mol,而CH3O和NO易于生成甲醛和硝酰。由CI方法求出的亚硝酸甲酯直接生成甲醛和硝酰的基态和激发态反应曲线表明,该反应难以按这种机理进行。因此,以上计算支持了实验提出的亚硝酸甲酯光反应生成甲醛和硝酰的两种机理中的光解离机制。  相似文献   

10.
The nature of the lithium—oxygen bond in the lithium—formaldehyde system (a prototype of the ketyl radical—alkali metal ion pairs) is examined by unrestricted Hartree—Fock calculations using minimum and extended Slater-type bases and ghost orbital methods. Two states of the equilibrium C2v symmetry structure are considered: 2B1, which is a π radical, and 2A1, Which is a σ radical. In contrast with the results of Ha et al. [10], the 2B1, state is found to have a slightly lower energy than 2A 1, When only s-type basis functions are used for the lithium atom; the 2B1, state is further stabilized if 2p functions at the lithium centre are included. Inclusion of 2p orbitals on lithium greatly exaggerates the charge density at the lithium atom in single-ζ basis calculations on the 2B1 state, and earlier calculations by Bernardi and Pedulli [8, 9] are found severely to underestimate the polarity of this state. A much better wave-function is obtained from double-ζ basis calculations, and it is concluded that the net charge of Li in the 2B1, state is close to + 1. The 2A1, state, on the other hand, is essentially homopolar.  相似文献   

11.
金纳米粒子(GNPs)对氢分子(H2)的解离具有良好的催化活性. 本文研究了水分子对 GNPs 催化 H2 解离的影响. 对于H2在中性和带正电的金簇(Aunδ,n=3~5;δ = 0,1)上的反应,考虑当水簇((H2O)m,m = 1, 2, 3, 7)参与反应时 GNPs 催化H2的解离过程的热力学和动力学. 研究结果表明,水对 H2 在GNPs上的解离有助催化的作用,且水簇大小不同,水助催化 H2 在金簇上解离的机理也有所不同,其由氢氢键的均裂解离转化为氧化解离. 对两种机理所得的产物,作者计算了它们的 Raman 和 IR 光谱.  相似文献   

12.
The existence of a series of 32 molecular radical anions from carboxylic acids salts RCOO-Cat−., where R = CH3, CH3CH2, CH3CH2CH2, (CH3)2CH, C6H5, o-CH3-C6H4, m-CH3-C6H4, and p-CH3-C6H4 and Cat = Li, Na, K, Rb, has been proven by the observation of their fragmentation in negative-ion fast-atom bombardment tandem mass spectrometry. These species occur at very low abundance and are not detected in the fast-atom bombardment spectra because they are hidden in the background. However, the collision-induced dissociation fragmentation of ions selected at the mass-to-charge ratio values that correspond to these species display characteristic signals that are completely different from the signals observed from pure matrix or after addition of corresponding metal hydroxide to the matrix. The main fragmentation observed is the loss of the neutral metal atom from RCOOCat−., followed by a loss of CO2 for the aromatic compounds. Neutral loss experiments also confirm the existence of these radical anions. Scans for the loss of a selected metal after addition of one of the carboxylic acid salts to the matrix display abundant peaks at mass-to-charge ratio values that correspond to the salt radical anions. Some weaker peaks appear at other mass-to-charge ratio values independent of the salt that is used and also are observed from the matrix when the corresponding metal hydroxide is added. When alkali metal salts from some deuterated acids are analyzed, the predicted shifts are observed. The loss of the neutral metal is more pronounced from RCOONa−., RCOOK−., and RCOORb−. than from RCOOLi−..  相似文献   

13.
The unimolecular decomposition of CF3CH2O (2,2,2-trifluoroethoxy) radical generated from 355 nm pulsed nanosecond laser photolysis of CF3CH2ONO (2,2,2-trifluoroethylnitrite) in the gas phase has been studied using Fourier transform infrared absorption spectroscopy. The radical preferentially dissociates via its C–H bond cleavage to yield CF3CHO (trifluoroacetaldehyde) as the major product. The infrared spectrum of formaldehyde, one of the products of C–C bond dissociation of CF3CH2O was not observed under a range of nitrite and argon buffer gas pressures. Similar results were obtained when thermal heating and broadband xenon lamp irradiation of the nitrite were carried out. The addition of high pressures of NO further decreased the production of CF3CHO since recombination of NO with the trifluoroethoxy radical competes with the unimolecular dissociation process. Surprisingly, CF3CDO was also the only product observed when the deuterated species CF3CD2ONO was photolysed by the 355 nm laser. These observations contradicted MP2/aug-cc-pVTZ calculations which were found to favour the C–C bond dissociation channel. However, 355 nm photolysis of CF3CH2ONO in the presence of O2 yielded trifluoroethylnitrate, CF3CH2ONO2 as the main product while CF3CHO and CF2O were also observable at much lower yields.  相似文献   

14.
NH4 and ND4 have been the subject of many studies, experimental and theoretical. Fuke et al. have recently recorded the photoionization cross-section at threshold for ND4 revealing unusual behavior. Based on this observation, theoretical calculations, and comparison with isoelectronic sodium and related alkali atoms, the existence of a deep Cooper minimum slightly below the ionization threshold is postulated for the 3s-np channel of the NH4 radical and its ND4 isotope.  相似文献   

15.
The Li atom adducts of formaldehyde (LiOCH2) and formaldimine (LiNHCH2) are produced in the gas phase by neutralization of the corresponding cations. Subsequent reionization, ca. 0.3 μs later, shows that the nominally hypervalent complexes LiXCH2 (X=O or NH) are stable, residing in potential energy minima. In the time span between the neutralization and reionization events, the LiXCH2 molecules dissociate partly into their constituents, Li + XCH2, the fragmentation extent of LiNHCH2 being more extensive. Ab initio calculations reveal three bound states for both Li atom complexes. Two (states A and B) resemble C-centered radicals carrying an ion pair, Li+·X---CH2·, and can be viewed as lithiated derivatives of the hydroxymethyl (HOCH2·) or aminomethyl (H2NCH2·) radical; the third state (C) represents a conventional, electrostatically bonded Li---X=CH2 complex with an essentially intact X=C double bond and the unpaired electron located at the metal atom. States A and B are bound more strongly than state C for LiOCH2; the opposite is true for LiNHCH2, where C is the most stable arrangement and B only marginally bound. The larger degree of dissociation observed for LiNHCH2 vis à vis LiOCH2 upon neutralization–reionization points out that the experiment samples a considerable amount of state B which is barely bound for LiNHCH2.  相似文献   

16.
The low lying electronic states of the molecule MoN were investigated by performing all electron ab initio multi-configuration self-consistent-field (CASSCF) calculations. The relativistic corrections for the one electron Darwin contact term and the relativistic mass-velocity correction were determined in perturbation calculations. The electronic ground state is confirmed as being 4. The chemical bond of MoN has a triple bond character because of the approximately fully occupied delocalized bonding π and σ orbitals. The spectroscopic constants for the ground state and ten excited states were derived. The excited doublet states 2, 2Γ, 2Δ, and 2+ are found to be lower lying than the 4Π state that was investigated experimentally. Elaborate multi-configuration configuration-interaction (MRCI) calculations were carried out for the states 4 and 4∏ using various basis sets. The spectroscopic constants for the 4 ground state were determined as re=1.636 Å and ωe=1109 cm−1, and for the 4∏ state as re=1.662 Å and ωe=941 cm−1. The values for the ground state are in excellent agreement with available experimental data. The MoN molecule is polar with a charge transfer from Mo to N. The dipole moment was determined as 2.11 D in the 4 state and as 4.60 D in the 4∏ state. These values agree well with the revised experimental values determined from molecular Stark spectroscopic measurements. The dissociation energy, De, is determined as 5.17 eV, and D0 as 5.10 eV.  相似文献   

17.
The complex triplet potential energy surface of the C2H3N system is investigated at the UB3LYP and CCSD(T) (single-point) levels in order to explore the possible reaction mechanism of C2H3 radical with N(4S). Eleven minimum isomers and 18 transition states are located. Possible energetically allowed reaction pathways leading to various low-lying dissociation products are obtained. Starting from the energy-rich reactant C2H3+N(4S), the first step is the attack of the N atom on the C atom having one H atom attached in C2H3 radical and form the intermediate C2H3N(1). The associated intermediate 1 can lead to product P1 CH2CN+H and P2 3CH2+3HCN by the cleavage of C–H bond and C–C bond, respectively. The most favorable pathway for the C2H3+N(4S) reaction is the channel leading to P1, which is preferred to that of P2 due to the comparative lower energy barrier. The formation of P3 3C2H2+3NH through hydrogen-abstraction mechanism is also feasible, especially at high temperature. The other pathways are less competitive comparatively.  相似文献   

18.
J. Perrin 《Chemical physics》1983,80(3):351-365
We have measured emission cross sections of various electronically excited fragments produced by electron-impact dissociation of SiH4, SiD4, Si2H6 and GeH4. At low impact energy (10–20 eV), the measured appearance potentials are correlated to specific dissociation processes. Below 22 eV superexcited states of SiH4 play a dominant role in the formation of neutral excited fragments. In agreement with the results obtained on alkanes, the cross sections for fragment emission from Si2H6 are lower than those for SiH4. On the other hand, the comparison of cross sections at 100 eV for fragment emission, dissociation and ionization on going from CH4 to SiH4 and GeH4 shows an increase of the probability for production of neutral ground-state fragments at the cost of excited or ionic fragments. Both effects can be explained by a growing probability for internal conversion among the decay channels of superexcited states with increasing number of atoms or electrons in the parent molecule. For each molecule, the H Balmer-emission cross sections at 100 eV are proportional to nb, where n 3 is the principal quantum number of the upper state of H and 3 < b < 5 is a parameter characteristic of the parent molecule. Finally, a detailed analysis of the isotopic effect between SiH4 and SiD4 on both fragment emission and ionization cross sections from 0 to 100 eV gives strong evidence of the competition between dissociation and autoionization in the decay of superexcited states.  相似文献   

19.
Two-centre model potential calculations have been carried out for the 2Σ+g,u and 2Πg,u states of Li+2, Na+2, K+2, Rb+2 and Cs+2. Comparison with other model potential calculations suggests that reliable potential curves have been obtained. The results indicate the usefulness of calculating diatomic energies by the method proposed.  相似文献   

20.
The photodissociation dynamics of the 3s Rydberg state of three ketones (CH3CO–R, R=C2H5, C3H7, and iso-C4H9) and the ensuing dissociation of the nascent acetyl radical following 195 nm excitation were investigated by ultrafast photoionization spectroscopy. The 3s state the lifetimes of these ketones are similar (2.5–2.9 ps), though lifetimes of the acetyl radical range from 8.6 ps for CH3CO–C2H5, 15 ps for CH3CO–C3H7, to 23 ps for CH3CO–(iso-C4H9), which suggests that for larger R more vibrational degrees of freedom compete for the excess energy so that less energy is partitioned into the internal energy of the acetyl radical.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号