首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
In this paper, we propose a fast and efficient way to restore blurred and noisy images with a high-order total variation minimization technique. The proposed method is based on an alternating technique for image deblurring and denoising. It starts by finding an approximate image using a Tikhonov regularization method. This corresponds to a deblurring process with possible artifacts and noise remaining. In the denoising step, a high-order total variation algorithm is used to remove noise in the deblurred image. We see that the edges in the restored image can be preserved quite well and the staircase effect is reduced effectively in the proposed algorithm. We also discuss the convergence of the proposed regularization method. Some numerical results show that the proposed method gives restored images of higher quality than some existing total variation restoration methods such as the fast TV method and the modified TV method with the lagged diffusivity fixed-point iteration.  相似文献   

2.
Iterative regularization multigrid methods have been successfully applied to signal/image deblurring problems. When zero-Dirichlet boundary conditions are imposed the deblurring matrix has a Toeplitz structure and it is potentially full. A crucial task of a multilevel strategy is to preserve the Toeplitz structure at the coarse levels which can be exploited to obtain fast computations. The smoother has to be an iterative regularization method. The grid transfer operator should preserve the regularization property of the smoother. This paper improves the iterative multigrid method proposed in [11] introducing a wavelet soft-thresholding denoising post-smoother. Such post-smoother avoids the noise amplification that is the cause of the semi-convergence of iterative regularization methods and reduces ringing effects. The resulting iterative multigrid regularization method stabilizes the iterations so that the imprecise (over) estimate of the stopping iteration does not have a deleterious effect on the computed solution. Numerical examples of signal and image deblurring problems confirm the effectiveness of the proposed method.  相似文献   

3.
We concern with fast domain decomposition methods for solving the total variation minimization problems in image processing. By decomposing the image domain into non-overlapping subdomains and interfaces, we consider the primal-dual problem on the interfaces such that the subdomain problems become independent problems and can be solved in parallel. Suppose both the interfaces and subdomain problems are uniformly convex, we can apply the acceleration method to achieve an $\mathcal{O}(1 / n^2)$ convergent domain decomposition algorithm. The convergence analysis is provided as well. Numerical results on image denoising, inpainting, deblurring, and segmentation are provided and comparison results with existing methods are discussed, which not only demonstrate the advantages of our method but also support the theoretical convergence rate.  相似文献   

4.
Image deblurring techniques based on convex optimization formulations, such as total-variation deblurring, often use specialized first-order methods for large-scale nondifferentiable optimization. A key property exploited in these methods is spatial invariance of the blurring operator, which makes it possible to use the fast Fourier transform (FFT) when solving linear equations involving the operator. In this paper we extend this approach to two popular models for space-varying blurring operators, the Nagy–O’Leary model and the efficient filter flow model. We show how splitting methods derived from the Douglas–Rachford algorithm can be implemented with a low complexity per iteration, dominated by a small number of FFTs.  相似文献   

5.
This paper describes new algorithms and related software for total variation (TV) image reconstruction, more specifically: denoising, inpainting, and deblurring. The algorithms are based on one of Nesterov’s first-order methods, tailored to the image processing applications in such a way that, except for the mandatory regularization parameter, the user needs not specify any parameters in the algorithms. The software is written in C with interface to Matlab (version 7.5 or later), and we demonstrate its performance and use with examples.  相似文献   

6.
董彬 《计算数学》2019,41(4):343-366
我们生活在数字的时代,数据已经成为了我们生活中不可或缺的一部分,而图像无疑是最重要的数据类型之一.图像反问题,包括图像降噪,去模糊,修复,生物医学成像等,是图像科学中的重要领域.计算机技术的飞速发展使得我们可以用精细的数学和机器学习工具来为图像反问题设计有效的解决方案.本文主要回顾图像反问题中的三大类方法,即以小波(框架)为代表的计算调和分析法、偏微分方程(PDE)方法和深度学习方法.我们将回顾这些方法的建模思想和一些具体数学形式,探讨它们之间的联系与区别,优点与缺点,探讨将这些方法有机融合的可行性与优势.  相似文献   

7.
Recently, a fast alternating minimization algorithm for total variation image deblurring (FTVd) has been presented by Wang, Yang, Yin, and Zhang (2008) [32]. The method in a nutshell consists of a discrete Fourier transform-based alternating minimization algorithm with periodic boundary conditions and in which two fast Fourier transforms (FFTs) are required per iteration. In this paper, we propose an alternating minimization algorithm for the continuous version of the total variation image deblurring problem. We establish convergence of the proposed continuous alternating minimization algorithm. The continuous setting is very useful to have a unifying representation of the algorithm, independently of the discrete approximation of the deconvolution problem, in particular concerning the strategies for dealing with boundary artifacts. Indeed, an accurate restoration of blurred and noisy images requires a proper treatment of the boundary. A discrete version of our continuous alternating minimization algorithm is obtained following two different strategies: the imposition of appropriate boundary conditions and the enlargement of the domain. The first one is computationally useful in the case of a symmetric blur, while the second one can be efficiently applied for a nonsymmetric blur. Numerical tests show that our algorithm generates higher quality images in comparable running times with respect to the Fast Total Variation deconvolution algorithm.  相似文献   

8.
Image deblurring problems appear frequently in astronomical image analysis. For image deblurring problems, it is reasonable to add a non-negativity constraint because of the physical meaning of the image. Previous research works are mainly full-space methods, i.e., solving a regularized optimization problem in a full space. To solve the problem more efficiently, we propose a subspace method. We first formulate the problem from full space to subspace and then use an interior-point trust-region method to solve it. The numerical experiments show that this method is suitable for ill-posed image deblurring problems.  相似文献   

9.
We show in this paper that the average over translations of an operator diagonal in a wavelet packet basis is a convolution. We also show that an operator diagonal in a wavelet packet basis can be decomposed into several operators of the same kind, each of them being better conditioned. We investigate the possibility of using such a convolution to approximate a given convolution (in practice an image blur). Then we use these approximations to deblur images. First, we show that this framework permits us to redefine existing deblurring methods. Then, we show that it permits us to define a new variational method which combines the wavelet packet and the total variation approaches. We argue and show by experiments that this permits us to avoid the drawbacks of both approaches which are, respectively, the ringing and the staircasing.  相似文献   

10.
Variational image denoising models based on regularization of gradients have been extensively studied. The total variation model by Rudin, Osher, and Fatemi (1992) [38] can preserve edges well but for images without edges (jumps), the solution to this model has the undesirable staircasing effect. To overcome this, mean curvature-based energy minimization models offer one approach for restoring both smooth (no edges) and nonsmooth (with edges) images. As such models lead to fourth order (instead of the usual second order) nonlinear partial differential equations, development of fast solvers is a challenging task. Previously stabilized fixed point methods and their associated multigrid methods were developed but the underlying operators must be regularized by a relatively large parameter. In this paper, we first present a fixed point curvature method for solving such equations and then propose a homotopy approach for varying the regularized parameter so that the Newton type method becomes applicable in a predictor-corrector framework. Numerical experiments show that both of our methods are able to maintain all important information in the image, and at the same time to filter out noise.  相似文献   

11.
In this paper,we propose new pretreat models for total variation (TV) minimization problems in image deblurring and denoising.Specially,blur operator is considered as useful information in restoration.New models in form is equivalent to pretreat the initial value by image blur operator.We successfully get a new (L.Rudin,S.Osher,and E.Fatemi) ROF model,a new level set motion model and a new anisotropic diffusion model respectively.Numerical experiments demonstrate that,under the same stopping rule,the proposed methods significantly accelerate the convergence of the mothed,save computation time and get the same restored effect.  相似文献   

12.
黎超琼  李锋 《运筹学学报》2010,24(1):101-114
LQP交替方向法是求解可分离结构型单调变分不等式问题的一种非常有效的方法.它不仅可以充分地利用目标函数的可分结构,将原问题分解为多个更易求解的子问题,还更适合求解大规模问题.对于带有三个可分离算子的单调变分不等式问题,结合增广拉格朗日算法和LQP交替方向法提出了一种部分并行分裂LQP交替方向法,构造了新算法的两个下降方向,结合这两个下降方向得到了一个新的下降方向,沿着这个新的下降方向给出了最优步长.并在较弱的假设条件下,证明了新算法的全局收敛性.  相似文献   

13.
This paper presents operators searching large neighborhoods in order to solve the vehicle routing problem. They make use of the pruning and propagation techniques of constraint programming which allow an efficient search of such neighborhoods. The advantages of using a large neighborhood are not only the increased probability of finding a better solution at each iteration but also the reduction of the need to invoke specially-designed methods to avoid local minima. These operators are combined in a variable neighborhood descent in order to take advantage of the different neighborhood structures they generate.  相似文献   

14.
This paper discusses identification of parameters of generalized ordered weighted averaging (GOWA) operators from empirical data. Similarly to ordinary OWA operators, GOWA are characterized by a vector of weights, as well as the power to which the arguments are raised. We develop optimization techniques which allow one to fit such operators to the observed data. We also generalize these methods for functional defined GOWA and generalized Choquet integral based aggregation operators.  相似文献   

15.
In this paper, the schemes of the alternating triangular method are set out in the class of splitting methods used for the approximate solution of Cauchy problems for evolutionary problems. These schemes are based on splitting the problem operator into two operators that are conjugate transposes of each other. Economical schemes for the numerical solution of boundary value problems for parabolic equations are designed on the basis of an explicit-implicit splitting of the problem operator. The alternating triangular method is also of interest for the construction of numerical algorithms that solve boundary value problems for systems of partial differential equations and vector systems. The conventional schemes of the alternating triangular method used for first-order evolutionary equations are two-level ones. The approximation properties of such splitting methods can be improved by transiting to three-level schemes. Their construction is based on a general principle for improving the properties of difference schemes, namely, on the regularization principle of A.A. Samarskii. The analysis conducted in this paper is based on the general stability (or correctness) theory of operator-difference schemes.  相似文献   

16.
Summary Integral operators are nonlocal operators. The operators defined in boundary integral equations to elliptic boundary value problems, however, are pseudo-differential operators on the boundary and, therefore, provide additional pseudolocal properties. These allow the successful application of adaptive procedures to some boundary element methods. In this paper we analyze these methods for general strongly elliptic integral equations and obtain a-posteriori error estimates for boundary element solutions. We also apply these methods to nodal collocation with odd degree splines. Some numerical examples show that these adaptive procedures are reliable and effective.This work was carried out while Dr. De-hao Yu was an Alexander-von-Humboldt-Stiftung research fellow at the University of Stuttgart in 1987, 1988  相似文献   

17.
In this work, a feasible direction method is proposed for computing the regularized solution of image restoration problems by simply using an estimate of the noise present on the data. The problem is formulated as an optimization problem with one quadratic constraint. The proposed method computes a feasible search direction by inexactly solving a trust region subproblem with the truncated Conjugate Gradient method of Steihaug. The trust region radius is adjusted to maintain feasibility and a line-search globalization strategy is employed. The global convergence of the method is proved. The results of image denoising and deblurring are presented in order to illustrate the effectiveness and efficiency of the proposed method.  相似文献   

18.
We show that the Foldy-Wouthuysen transformation and its generalizations are simplified if the methods of pseudodifferential operators are used, which also allow estimating the exactness of the transition from the Dirac equation to the reduced equations for electrons and positrons. The methods and techniques used can be useful not only in studying asymptotic solutions of the Dirac equation but also in other problems.  相似文献   

19.
We present two extrapolation methods for multi-sublinear operators that allow us to derive estimates for general functions from the corresponding estimates on characteristic functions. Of these methods, the first is applicable to general multi-sublinear operators while the second requires working with the so-called (ε,δ)-atomic operators. Among the applications, we discuss some new endpoint estimates for the bilinear Hilbert transform.  相似文献   

20.
A new identity is given in this paper for estimating the norm of the product of nonexpansive operators in Hilbert space. This identity can be applied for the design and analysis of the method of alternating projections and the method of subspace corrections. The method of alternating projections is an iterative algorithm for determining the best approximation to any given point in a Hilbert space from the intersection of a finite number of subspaces by alternatively computing the best approximations from the individual subspaces which make up the intersection. The method of subspace corrections is an iterative algorithm for finding the solution of a linear equation in a Hilbert space by approximately solving equations restricted on a number of closed subspaces which make up the entire space. The new identity given in the paper provides a sharpest possible estimate for the rate of convergence of these algorithms. It is also proved in the paper that the method of alternating projections is essentially equivalent to the method of subspace corrections. Some simple examples of multigrid and domain decomposition methods are given to illustrate the application of the new identity.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号