首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ionic and optical properties of an inclined-wall magnetic mass analyzer with electrostatic direction focusing of ions in a nonuniform (r ?1) magnetic field were studied. A condition for ion focusing in the radial plane was derived, and the basic parameters of the mass analyzer were determined.  相似文献   

2.
Linear and nonlinear coupling of drift and ion acoustic waves are studied in a nonuniform magnetized plasma comprising of Oxygen and Hydrogen ions with nonthermal distribution of electrons. It has been observed that different ratios of ion number densities and kappa and Cairns distributed electrons significantly modify the linear dispersion characteristics of coupled drift-ion acoustic waves. In the nonlinear regime, KdV (for pure drift waves) and KP (for coupled drift-ion acoustic waves) like equations have been derived to study the nonlinear evolution of drift solitary waves in one and two dimensions. The dependence of drift solitary structures on different ratios of ion number densities and nonthermal distribution of electrons has also been explored in detail. It has been found that the ratio of the diamagnetic drift velocity to the velocity of the nonlinear structure determines the existence regimes for the drift solitary waves. The present investigation may be beneficial to understand the formation of solitons in the ionospheric F-region.  相似文献   

3.
It is shown that the parallel (magnetic field-aligned) velocity shear can drive the low-frequency (in comparison with the ion gyrofrequency) electrostatic (LF-ES) waves in an ultracold super-dense nonuniform magnetoplasma. By using an electron density response arising from the balance between the electrostatic and quantum Bohm forces, as well as the ion density response deduced from the continuity and momentum equations, a wave equation for the LF-ES waves is derived. In the local approximation, a new dispersion relation is obtained by Fourier transforming the wave equation. The dispersion relation reveals an oscillatory instability of dispersive drift-like modes in super-dense quantum magnetoplasmas.  相似文献   

4.
W.M. Moslem  S. Ali 《Physics letters. A》2008,372(19):3471-3475
The dispersion properties of three-dimensional electrostatic waves in a nonuniform quantum electron-positron magnetoplasma are examined. A new dispersion relation is derived using the electron and positron densities response arising from the balance between the quantum Bohm and electrostatic forces, and from the electron and positron continuity and Poisson equations. In the local approximation regime, the dispersion relation admits both oscillatory and purely growing instabilities those depend on the quantum parameters as well as the density, velocity and magnetic field inhomogeneities.  相似文献   

5.
A stretched vortex model is proposed which includes a nonuniform stretching in the radial direction that is clearly present in real flows, as well as a slow variation of velocity profiles along the vortex axis. Both features of this boundary layer approximation depart from the classical Burgers solution. This model is shown to be in very good agreement with experimental velocity measurements.  相似文献   

6.
The electrostatic interaction of a charged spherical dielectric macroparticle with a point charge in a plasma in the presence of an external uniform electric field is considered. The electrostatic force and the torque acting on the macroparticle have been determined, and the form of the interaction potential has been established for a nonuniform distribution of free charge on the macroparticle surface. A simple (for calculations) expression for the interaction potential that describes well the exact potential at all interparticle distances is proposed. The angular velocity of the spinning of dust particles caused by a nonuniform distribution of free charge over their surface has been estimated.  相似文献   

7.
The properties of the collision integral in a quantum Boltzmann-type kinetic equation are studied under the conditions of spatially nonuniform distributions of colliding particles interacting with an external electromagnetic field. The components of the nonlinear resonances and the velocity distribution of the excited atoms, which are due to polarization transitions, are determined on the basis of the Kazantsev collision integral.  相似文献   

8.
The frequent situation where a strongly nonlinear rotating structure develops in a linear magnetized plasma column is investigated experimentally with emphasis on the ion velocity distribution function (IVDF). Most often, a mode m=2 appears exhibiting a large density and potential perturbation with angular frequency slightly above the ion cyclotron frequency. For the first time the spatiotemporal evolution of the IVDF is studied using time-resolved laser induced fluorescence to explore the ion's interaction with the nonlinear wave propagating inside the column and at the origin of plasma transport outside the limiter. The ion fluid exhibits an alternance from azimuthal to radial velocity due to the electric field inside the rotating structure. A fluid model also allows us to locally reconstruct the self-consistent electric field evolution which contradicts all existing theories.  相似文献   

9.
Based on fluid equations,we show a time-dependent self-consistent nonlinear model for void formation in magnetized dusty plasmas.The cylindrical configuration is applied to better illustrate the effects of the static magnetic field,considering the azimuthal motion of the dusts.The nonlinear evolution of the dust void and the rotation of the dust particles are then investigated numerically.The results show that,similar to the unmagnetized one-dimensional model,the radial ion drag plays a crucial role in the evolution of the void.Moreover,the dust rotation is driven by the azimuthal ion drag force exerting on the dust.As the azimuthal component of ion velocity increases linearly with the strength of the magnetic field,the azimuthal component of dust velocity increases synchronously.Moreover,the angular velocity gradients of the dust rotation show a sheared dust flow around the void.  相似文献   

10.
Two-dimensional structures of the electrostatic potential, density, and flow velocity near the edge of a tokamak plasma are investigated. The model includes the nonlinearity in bulk-ion viscosity and turbulence-driven shear viscosity. For the case with the strong radial electric field (H mode), a two-dimensional structure in a transport barrier is obtained, giving a poloidal shock with a solitary radial electric field profile. The inward particle pinch is induced from this poloidal asymmetric electric field, and increases as the radial electric field becomes stronger. The abrupt increase of this inward ion and electron flux at the onset of L- to H-mode transition explains the rapid establishment of the density pedestal, which is responsible for the observed spontaneous self-reorganization into an improved confinement regime.  相似文献   

11.
The properties of dust ion acoustic waves are investigated in an unmagnetized multicomponent plasma system consisting of ion beam, charged positive and negative ions, electrons obeying nonthermal-Tsallis distribution and stationary negatively charged dust grains by the conventional Sagdeev pseudopotential method, through which the condition for existence of several nonlinear structures is analyzed theoretically. The dispersion relation for electrostatic waves is derived and analyzed and an expression of the energy integral equation is obtained. It is reported here that our plasma model supports solitions, double layers and supersoliton solutions for certain range of parameters. Finally, the effects of different physical plasma parameters on these nonlinear structures are studied numerically. The present theory should be helpful in understanding the salient features of the electrostatic waves in space and in laboratory plasmas where two distinct groups of ions and non-Maxwellian distributed electrons are present.  相似文献   

12.
We present analytical and simulation studies of highly resolved dust fluid flows involving nonlinearly coupled incompressible surface dust vortex modes (SDVMs) and dust zonal flows (DZFs) in nonuniform unmagnetized dusty plasmas. For this purpose, we use the hydrodynamic equations for the dust fluid and Boltzmann distributed electrons and ions and obtain a set of equations that exhibit nonlinear couplings between the SDVMs and DZFs. The nonlinear equations are then used to investigate the parametric excitation of DZFs by the Reynolds stresses of the SDVMs. Large scale SDVMs emerge through nonlinear interactions with DZFs, and they suppress the dust particle transport across the density gradient. In contrast, DZFs possess short scale vortices with a higher turbulent transport. The relevance of our investigation into the role of coherent structures in a nonuniform dusty plasma is discussed.  相似文献   

13.
We consider the problem on the formation of suprathermal particle fluxes by electrostatic structures in strongly turbulent cosmic plasmas. It is shown that regions with a strong plasma turbulence can be large accelerators of charged particles. We give solutions of the stationary kinetic equation in a turbulent layer for different acceleration regimes and estimate the efficiency of diffusion over the longitudinal and transverse velocities of particles with respect to the magnetic field. The transverse diffusion in velocity space is more efficient for ions and leads to strong isotropization of ion fluxes. Electrons move almost along the magnetic field. We reveal the conditions under which the regular force in a nonuniform magnetic field influences the stochastic-acceleration process. The average energy of axial motion of the particles and the particle fluxes at large distances from the injection region are estimated. Ions and electrons can be accelerated up to comparable energies. We analyze the characteristic features of the motion of the relativistic-particle beams. It is shown that strong plasma turbulence can form particle beams with specific energies. The proposed mechanism is useful for explanation of the properties of energetic particles in cosmic plasmas with magnetic-field-aligned currents, e.g., in high-latitude regions of planetary magnetospheres, force-free configurations of the solar corona, and the solar wind.  相似文献   

14.
The nonlinear interaction of a magnetized ion with two beating electrostatic waves (BEW) whose frequencies differ by a cyclotron harmonic can lead, under some conditions [Phys. Rev. E 69, 046402 (2004)], to vigorous acceleration for an ion with arbitrarily low initial velocity. When applied to an ensemble of ions, this mechanism promises enhanced heating over single electrostatic wave (SEW) heating for comparable wave energy densities. The extension of single ion acceleration to heating (SEWH and BEWH) of an ensemble of initially thermalized ions was carried out to compare the processes. Using a numerical solution of the Vlasov equation as a guideline, an analytical expression for the heating level was derived with Lie transforms and was used to show BEWH's superiority over all parameter space.  相似文献   

15.
16.
The nonlinear propagation of an intense neutrino flux in an electron-positron plasma with equilibrium density and magnetic field inhomogeneities is considered. It is found that the neutrinos are nonlinearly coupled with electrostatic and electromagnetic disturbances due to weak Fermi interaction and ponderomotive forces. The process is governed by a Klein-Gordon equation for the neutrino flux and a wave equation for the plasma oscillations in the presence of the ponderomotive force of the neutrinos. This pair of equations is then used to derive a nonlinear dispersion relation which exhibits that nonthermal electrostatic and electromagnetic fluctuations are created on account of the energy density of the neutrinos. The relevance of our investigation to the anomalous absorption of neutrinos in a nonuniform magnetized medium is pointed out.  相似文献   

17.
We present the results of kinetic numerical simulations that demonstrate the existence of a novel branch of electrostatic nonlinear waves driven by particle trapping processes. These waves have an acoustic-type dispersion with phase speed comparable to the ion thermal speed and would thus be heavily Landau damped in the linear regime. At variance with the ion-acoustic waves, this novel electrostatic branch can exist at a small but finite amplitude even for low values of the electron to ion temperature ratio. Our results provide a new interpretation of observations in space plasmas, where a significant level of electrostatic activity is observed in the high frequency region of the solar-wind turbulent spectra.  相似文献   

18.
Z. Z. Latypov 《Technical Physics》2012,57(12):1706-1708
A model of a new type of a monochromator for the ion beam emitted by mass-spectrometric ion sources with a broad energy distribution is considered. The ion beam monochromation was carried out by transforming the energy spectrum of particles in high vacuum by the shock effect produced by electric pulses on ions in a spatially nonuniform field followed by the formation of an ion beam in the electrostatic field of the immersion lens. Numerical simulation of the operation of the monochromator proves its performability as a compact and effective instrument for solving the problem of monochromation in mass-spectrometry.  相似文献   

19.
The nonlinear screening of an ionized donor by the degenerate gas of conduction electrons in a crystalline semiconductor is analyzed. For nonlinear screening, the charge density of the electron cloud screening the ion is not proportional to the total electrostatic potential produced by the ion and cloud. As a result, the potential decreases with the distance from the ion more weakly than it does within the linear approximation and the energy of the electrostatic correlation between the ion and screening cloud is smaller.  相似文献   

20.
Frequency-angular distributions of signal wave intensity are calculated for spontaneous parametric down-conversion and parametric frequency conversion in spatially nonuniform nonlinear media. Wave reflection from interfaces is taken into account, and both regular and irregular nonuniform distributions of second-order nonlinear susceptibility are considered. A unified approach using a scattering matrix and a generalized Kirchhoff law is applied in calculations of spontaneous and stimulated processes in dissipative nonlinear media. Interference of electromagnetic zero-point fluctuations of the vacuum, nonlinear interference, and nonlinear diffraction are examined for media with various absorptive properties. Theoretical foundations are developed for diagnostics of nonuniform distributions of the second-order susceptibility, based on measurement of the line profiles of nonlinear signals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号