首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A proof of Bell's theorem without inequalities and involving only two observers is given by suitably extending a proof of the Bell-Kochen-Specker theorem due to Mermin. This proof is generalized to obtain an inequality-free proof of Bell's theorem for a set of n Bell states (with n odd) shared between two distant observers. A generalized CHSH inequality is formulated for n Bell states shared symmetrically between two observers and it is shown that quantum mechanics violates this inequality by an amount that grows exponentially with increasing n.  相似文献   

2.
We give a short and unified proof of Hardy-Lieb-Thirring inequalities for moments of eigenvalues of fractional Schrödinger operators. The proof covers the optimal parameter range. It is based on a recent inequality by Solovej, Sørensen, and Spitzer. Moreover, we prove that any non-magnetic Lieb-Thirring inequality implies a magnetic Lieb-Thirring inequality (with possibly a larger constant).  相似文献   

3.
It is shown that the 33 complex rays in three dimensions used by Penrose to prove the Bell-Kochen-Specker theorem have the same orthogonality relations as the 33 real rays of Peres, and therefore provide an isomorphic proof of the theorem. It is further shown that the Peres and Penrose rays are just two members of a continuous three-parameter family of unitarily inequivalent rays that prove the theorem.  相似文献   

4.
We consider Kochen-Specker theorem for three-qubit system with eight-dimensional state space. Reexamining the proof given by Kernaghan and Peres, we make some clarifications on the orthogonality of rays and rank-two projectors found by them. Basing on their five groups of orthogonal octad, we then show a proof that requires only seventeen rays.  相似文献   

5.
《Physics letters. A》1988,133(3):101-104
We consider two models which can violate Bell's inequality. In a local model violation of Bell's inequality is a proof that the probability scheme must contain a nondistributive sublattice. In a distributive scheme violation is a proof that the model is nonlocal, making possible a particular kind of signalling between its parts.  相似文献   

6.
We state and prove a new and previously unsuspected tree graph inequality, which is significantly stronger than the one commonly applied to cluster expansions. The older inequality controls the counting problem in the convergence proof of such an expansion, but the new inequality does more: it also exhibits extra 1/n! factors that can be applied to the cancellation of number divergences. The proof of this new combinatoric estimate is completely elementary.Supported in part by the National Science Foundation under Grant No. MCS-8301116  相似文献   

7.
We formulate and prove a general set of correlation inequalities for spin — 1/2 Ising ferromagnets with pair interactions. One of these is the Griffiths-Hurst-Sherman inequality. The proof is obtained using Gaussian random variables.  相似文献   

8.
This Letter presents the first rigorous proof of the conjecture raised by Gisin and Bechmann-Pasquinucci [Phys. Lett. A 246, 1 (1998)]], that the Greenberger-Horne-Zeilinger states of n qubits and the states obtained from them by local unitary transformations are the unique states that maximally violate the Bell-Klyshko inequalities. The proof is obtained by using the certain algebraic properties that Pauli's matrices satisfy and some subtle mathematical techniques. Since all states obtained by local unitary transformations of a maximally entangled state are equally valid entangled states, we thus give a characterization of maximally entangled states of n qubits in terms of the Bell-type inequality.  相似文献   

9.
One of the most significant and well-known properties of entangled states is that they may lead to violations of Bell inequalities and are thus inconsistent with any local-realistic theory. However, there are entangled states that cannot violate any Bell inequality, and in general the precise relationship between entanglement and observable nonlocality is not well understood. We demonstrate that a violation of the Clauser-Horne-Shimony-Holt (CHSH) inequality can be demonstrated in a certain kind of Bell experiment for all entangled states. Our proof of the result consists of two main steps. We first provide a simple characterization of the set of states that do not violate the CHSH inequality even after general local operations and classical communication. Second, we prove that for each entangled state sigma, there exists another state rho not violating the CHSH inequality, such that rhomultiply sign in circlesigma violates the CHSH inequality.  相似文献   

10.
Models of inflation in which non-Gaussianity is generated outside the horizon, such as curvaton models, generate distinctive higher-order correlation functions in the cosmic microwave background and other cosmological observables. Testing for violation of the Suyama-Yamaguchi inequality τ(NL) ≥ (6/5f (NL))(2), where f(NL) and f(NL) denote the amplitude of the three-point and four-point functions in certain limits, has been proposed as a way to distinguish qualitative classes of models. This inequality has been proved for a wide range of models, but only weaker versions have been proved in general. In this Letter, we give a proof that the Suyama-Yamaguchi inequality is always satisfied. We discuss scenarios in which the inequality may appear to be violated in an experiment such as Planck and how this apparent violation should be interpreted.  相似文献   

11.
The set of 60 real rays in four dimensions derived from the vertices of a 600-cell is shown to possess numerous subsets of rays and bases that provide basis-critical parity proofs of the Bell-Kochen-Specker (BKS) theorem (a basis-critical proof is one that fails if even a single basis is deleted from it). The proofs vary considerably in size, with the smallest having 26 rays and 13 bases and the largest 60 rays and 41 bases. There are at least 90 basic types of proofs, with each coming in a number of geometrically distinct varieties. The replicas of all the proofs under the symmetries of the 600-cell yield a total of almost a hundred million parity proofs of the BKS theorem. The proofs are all very transparent and take no more than simple counting to verify. A few of the proofs are exhibited, both in tabular form as well as in the form of MMP hypergraphs that assist in their visualization. A survey of the proofs is given, simple procedures for generating some of them are described and their applications are discussed. It is shown that all four-dimensional parity proofs of the BKS theorem can be turned into experimental disproofs of noncontextuality.  相似文献   

12.
Has Bell's inequality a general meaning for hidden-variable theories?   总被引:6,自引:0,他引:6  
We analyze the proof given by J. S. Bell of an inequality between mean values of measurement results which, according to him, would be characteristic of any local hidden-parameter theory. It is shown that Bell's proof is based upon a hypothesis already contained in von Neumann's famous theorem: It consists in the admission that hidden values of parameters must obey the same statistical laws as observed values. This hypothesis contradicts in advance well-known and certainly correct statistical relations in measurement results: One must therefore reject the type of theory considered by Bell, and his inequality has no general meaning.  相似文献   

13.
The inequality in the title is derived for standard site percolation in any dimension, assuming only that the percolation density vanishes at the critical point. The proof, based on a lattice animal expansion, is fairly simple and is applicable to rather general (site or bond, short-or long-range) independent percolation models.  相似文献   

14.
We show that an experimental demonstration of quantum contextuality using 2 degrees of freedom of single neutrons based on a violation of an inequality derived from the Peres-Mermin proof of the Kochen-Specker theorem would be more conclusive than those obtained from previous experiments involving pairs of ions [M. A. Rowe, Nature (London) 409, 791 (2001)10.1038/35057215] and single neutrons [Y. Hasegawa, Nature (London) 425, 45 (2003)10.1038/nature01881] based on violations of Clauser-Horne-Shimony-Holt-like inequalities.  相似文献   

15.
A state-dependent proof of Bell's theorem without inequalities using the product state of any two maximally entangled states (Bell states) of two qubits for two observers in an ideal condition, each of which possesses two qubits, is proposed. It is different from the other proofs in which there exists a fundamental requirement that certain specific suitable Bell states have been chosen. Moreover, in any non-ideal situation, a common Bell inequality independent of the choices of the 16-product states is derived, which is used to test the contradiction between quantum mechanics and local reality theory in the reach of current experimental technology.  相似文献   

16.
The energy spectra of extragalactic sources of cosmic rays are calculated by solving an inverse problem of the transport of cosmic rays with energies of 1018–1021 eV in a Universe filled with background electromagnetic radiation. Calculations are performed using cosmic-ray spectra measured on Earth in Auger experiments. It is assumed that protons and iron nuclei dominate in the composition of a source.  相似文献   

17.
In this paper the failure of Hardy's nonlocality proof for the class of maximally entangled states is considered. A detailed analysis shows that the incompatibility of the Hardy equations for this class of states physically originates from the fact that the existence of quantum perfect correlations for the three pairs of two-valued observables (D 11, D 21), (D 11, D 22), and (D 12, D 21) [in the sense of having with certainty equal (different) readings for a joint measurement of any one of the pairs (D 11, D 21), (D 11, D 22), and (D 12, D 21)], necessarily entails perfect correlation for the pair of observables (D 12, D 22) [in the sense of having with certainty equal (different) readings for a joint measurement of the pair (D 12, D 22)]. Indeed, the set of these four perfect correlations is found to satisfy the CHSH inequality, and then no violations of local realism will arise for the maximally entangled state as far as the four observables D ij, i,j = 1 or 2, are concerned. The connection between this fact and the impossibility for the quantum mechanical predictions to give the maximum possible theoretical violation of the CHSH inequality is pointed out. Moreover, it is generally proved that the fulfillment of all the Hardy nonlocality conditions necessarily entails a violation of the resulting CHSH inequality. The largest violation of this latter inequality is determined.  相似文献   

18.
Explicit results of the van der Pauw method for a sample containing an isolated hole are presented together with experimental confirmation. Results of measurements and numerical analysis strongly suggest that four probe resistivities obey inequality similar in the form to the famous van der Pauw equation. The inequality seems to be valid for any sample with an isolated hole and contacts located on the same edge, however rigorous proof is not given. The inequality can be used for experimental detection of the sample quality.  相似文献   

19.
It is shown that the 24 quantum states or rays used by Peres (J. Phys. A 24, 174-8 (1991)) to give a proof of the Bell–Kochen–Specker (BKS) theorem have a close connection with Reye's configuration, a system of twelve points and sixteen lines known to projective geometers for over a century. The interest of this observation stems from the fact that it provides a ready explanation for many of the regularities exhibited by the Peres rays and also permits a systematic construction of all possible non-coloring proofs of the BKS theorem based on these rays. An elementary exposition of the connection between the Peres rays and Reye's configuration is given, following which its applications to the BKS theorem are discussed.  相似文献   

20.
We introduce a version of the chained Bell inequality for an arbitrary number of measurement outcomes and use it to give a simple proof that the maximally entangled state of two d-dimensional quantum systems has no local component. That is, if we write its quantum correlations as a mixture of local correlations and general (not necessarily quantum) correlations, the coefficient of the local correlations must be zero. This suggests an experimental program to obtain as good an upper bound as possible on the fraction of local states and provides a lower bound on the amount of classical communication needed to simulate a maximally entangled state in dxd dimensions. We also prove that the quantum correlations violating the inequality are monogamous among nonsignaling correlations and, hence, can be used for quantum key distribution secure against postquantum (but nonsignaling) eavesdroppers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号