首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper we examine operators which can be derived from the general solution of functional equations on associativity. We define the characteristics of those functions f(x) which are necessary for the production of operators. We shall show, that with the help of the negation operator for every such function f(x) a function g(x) can be given, from which a disjunctive operator can be derived, and for the three operators the DeMorgan identity is fulfilled. For the fulfillment of the DeMorgan identity the necessary and sufficient conditions are given.We shall also show that an fλ(x) can be constructed for every f(x), so that for the derived kλ(x,y) and dλ(x,y) limλ→∞kλ(x,y) and limλ→∞dλ(x,y) = max(x,y).As Yager's operator is not reducible, for every λ there exists an α, for which, in case x < α and y<α, kλ(x,y) = 0.We shall give an f(x) which has the characteristics of Yager's operator, and which is strictly monotone.Finally we shall show, that with the help of all those f(x), which are necessary when constructing a k(x,y), an F(x) can be constructed which has the properties of the measures of fuzziness introduced by A. De Luca and S. Termini. Some classical fuzziness measures are obtained as special cases of our system.  相似文献   

2.
In this paper, we show existence, uniqueness and exact asymptotic behavior of solutions near the boundary to a class of semilinear elliptic equations −Δu=λg(u)−b(x)f(u) in Ω, where λ is a real number, b(x)>0 in Ω and vanishes on ∂Ω. The special feature is to consider g(u) and f(u) to be regularly varying at infinity and b(x) is vanishing on the boundary with a more general rate function. The vanishing rate of b(x) determines the exact blow-up rate of the large solutions. And the exact blow-up rate allows us to obtain the uniqueness result.  相似文献   

3.
4.
In this paper, we discuss the existence of pseudo-almost automorphic solutions to linear differential equation which has an exponential trichotomy~ and the results also hold for some nonlinear equations with the form x'(t) = f(t,x(t)) + λg(t,x(t)), where f,g are pseudo-almost automorphic functions. We prove our main result by the application of Leray-Schauder fixed point theorem.  相似文献   

5.
In geometric terms, the Ekeland variational principle says that a lower-bounded proper lower-semicontinuous functionf defined on a Banach spaceX has a point (x 0,f(x 0)) in its graph that is maximal in the epigraph off with respect to the cone order determined by the convex coneK λ = {(x, α) ∈X × ?:λ ∥x∥ ≤ ? α}, where λ is a fixed positive scalar. In this case, we write (x 0,f(x 0))∈λ-extf. Here, we investigate the following question: if (x 0,f(x 0))∈λ-extf, wheref is a convex function, and if 〈f n 〉 is a sequence of convex functions convergent tof in some sense, can (x 0,f(x 0)) be recovered as a limit of a sequence of points taken from λ-extf n ? The convergence notions that we consider are the bounded Hausdorff convergence, Mosco convergence, and slice convergence, a new convergence notion that agrees with the Mosco convergence in the reflexive setting, but which, unlike the Mosco convergence, behaves well without reflexivity.  相似文献   

6.
The gamma class Γ α (g) consists of positive and measurable functions that satisfy f(x+yg(x))/f(x)→exp(αy). In most cases, the auxiliary function g is Beurling varying, i.e. g(x)/x→0 and g∈Γ0(g). Taking h=logf, we find that hEΓ α (g,1), where EΓ α (g,a) is the class of ultimately positive and measurable functions that satisfy (f(x+yg(x))?f(x))/a(x)→αy. In this paper, we discuss local uniform convergence for functions in the classes Γ α (g) and EΓ α (g,a). From this we obtain several representation theorems. We also prove some higher order relations for functions in the classes Γ α (g) and EΓ α (g,a). Some applications conclude the paper.  相似文献   

7.
In this paper, we consider a normalized biholomorphic mapping f(x) defined on the unit ball in a complex Banach space, where the origin 0 is a zero of order k+1 of f(x)−x. The precise growth and covering theorem for f(x) is obtained when f(x) is a starlike mapping or a starlike mapping of order α. Especially, the precise growth and covering theorem for f(x) is also established when f(x) is a quasi-convex mapping. Moreover, the precise distortion theorem for f(x) is given when f(x) is a convex mapping. Our result includes many known results.  相似文献   

8.
We consider the parabolic equation u t ? Δu = λ f (x)g(u) as well as the corresponding elliptic problem, with a nonnegative profile f and a positive nondecreasing convex function g verifying ${\lim_{u \to 1^-} g(u) = \infty}$ . Our study is motivated by a simplified Micro-Electromechanical Systems (MEMS) device model. We extend or improve many qualitative and quantitative results for the MEMS modeling to this very general setting, which help us to understand more about the influence of f on the pull-in voltage λ* and the quenching phenomenon. Especially, we show some new estimates for λ* and the quenching time T.  相似文献   

9.
In this paper we will prove the pointwise convergence of L(fxyλ) to f(x0y0), as (xyλ) tends to (x0y0λ0) in the space L2π, by the three parameter family of singular operators. In contrast to previous works, the kernel function is radial.  相似文献   

10.
Let ? be a binary relation on A×X, and suppose that there are real valued functions f on A and g on X such that, for all ax, byA×X, ax ? by if and only if f (a)+g(x) ? f(b)+g(y). This paper establishes uniqueness properties for f and g when A is a finite set, X is a real interval with g increasing on X, and for any a, b and x there is a y for which f(a)+g(x)=f(b)+g(y). The resultant uniqueness properties occupy an intermediate position among uniqueness properties for other structural cases of two-factor additive measurement.It is shown that f is unique up to a positive affine transformation (αf1 with α > 0), but that g is unique up to a similar positive affine transformation (αg2) if and only if the ratio [f(a)?f(b)]/[f(a)?f(c)] is irrational for some a, b, cA. When the f ratios are rational for all cases where they are defined, there will be a half-open interval (x0, x1) in X such that the restriction of g on (x0, x1) can be any increasing function for which sup {g(x)?g(x0): x0 ? x < x1} does not exceed a specified bound, and, when g is thus defines on (x0, x1), it will be uniquely determined on the rest of X. In general, g must be continuous only in the ‘irrational’ case.  相似文献   

11.
This paper studies the representation of a positive polynomial f(x) on a noncompact semialgebraic set S={xRn:g1(x)≥0,…,gs(x)≥0} modulo its KKT (Karush-Kuhn-Tucker) ideal. Under the assumption that the minimum value of f(x) on S is attained at some KKT point, we show that f(x) can be represented as sum of squares (SOS) of polynomials modulo the KKT ideal if f(x)>0 on S; furthermore, when the KKT ideal is radical, we argue that f(x) can be represented as a sum of squares (SOS) of polynomials modulo the KKT ideal if f(x)≥0 on S. This is a generalization of results in [J. Nie, J. Demmel, B. Sturmfels, Minimizing polynomials via sum of squares over the gradient ideal, Mathematical Programming (in press)], which discusses the SOS representations of nonnegative polynomials over gradient ideals.  相似文献   

12.
Some parallel results of Gross' paper (Potential theory on Hilbert space, J. Functional Analysis1 (1967), 123–181) are obtained for Uhlenbeck-Ornstein process U(t) in an abstract Wiener space (H, B, i). Generalized number operator N is defined by Nf(x) = ?lim∈←0{E[f(Uξ))] ? f(x)}/Eξ, where τx? is the first exit time of U(t) starting at x from the ball of radius ? with center x. It is shown that Nf(x) = ?trace D2f(x)+〈Df(x),x〉 for a large class of functions f. Let rt(x, dy) be the transition probabilities of U(t). The λ-potential Gλf, λ > 0, and normalized potential Rf of f are defined by Gλf(X) = ∫0e?λtrtf(x) dt and Rf(x) = ∫0 [rtf(x) ? rtf(0)] dt. It is shown that if f is a bounded Lip-1 function then trace D2Gλf(x) ? 〈DGλf(x), x〉 = ?f(x) + λGλf(x) and trace D2Rf(x) ? 〈DRf(x), x〉 = ?f(x) + ∫Bf(y)p1(dy), where p1 is the Wiener measure in B with parameter 1. Some approximation theorems are also proved.  相似文献   

13.
We consider a variable Krasnosel’skii-Mann algorithm for approximating critical points of a prox-regular function or equivalently for finding fixed-points of its proximal mapping proxλf. The novelty of our approach is that the latter is not non-expansive any longer. We prove that the sequence generated by such algorithm (via the formula xk+1=(1−αk)xk+αkproxλkfxk, where (αk) is a sequence in (0,1)), is an approximate fixed-point of the proximal mapping and converges provided that the function under consideration satisfies a local metric regularity condition.  相似文献   

14.
We construct stable invariant manifolds for semiflows generated by the nonlinear impulsive differential equation with parameters x'= A(t)x + f(t, x, λ), t≠τi and x(τ+i) = Bix(τi) + gi(x(τi), λ), i ∈ N in Banach spaces, assuming that the linear impulsive differential equation x'= A(t)x, t≠τi and x(τ+i) = Bix(τi), i ∈ N admits a nonuniform (μ, ν)-dichotomy. It is shown that the stable invariant manifolds are Lipschitz continuous in the parameter λ and the initial values provided that the nonlinear perturbations f, g are sufficiently small Lipschitz perturbations.  相似文献   

15.
The Abel equation of the second kind
[g0(x)+g1(x)u]u=f0(x)+f1(x)u+f2(x)u2  相似文献   

16.
In this paper, we use for the first time linearization techniques to deal with boundary blow-up elliptic problems. After introducing a convenient functional setting, we show that the problem Δu=λa(x)up+g(x,u) in Ω, with u=+∞ on ∂Ω, has a unique positive solution for large enough λ, and determine its asymptotic behavior as λ→+∞. Here p>1, a(x) is a continuous function which can be singular near ∂Ω and g(x,u) is a perturbation term with potential growth near zero and infinity. We also consider more general problems, obtained by replacing up by eu or a “logistic type” function f(u).  相似文献   

17.
This generalizes earlier results (T. I. Seidman, Indiana Univ. Math. J.30 (1981), 305–311) for ?Δu = λf(u). For the family of equations (su1) Au = g(u, λ) with appropriate boundary conditions the object is to construct from g and the boundary conditions a function η(λ, r) such that a bound y(λ) on ∥u can be obtained by solving the ODE: y′(λ) = η(λ, y) with y(λ0) = B(λ0) = bound at λ = λ0.  相似文献   

18.
Associated to a lower semicontinuous function, one can define its proximal mapping and farthest mapping. The function is called Chebyshev (Klee) if its proximal mapping (farthest mapping) is single-valued everywhere. We show that the function f is 1/λ-hypoconvex if its proximal mapping Pλf is single-valued. When the function f is bounded below, and Pλf is single-valued for every λ>0, the function must be convex. Similarly, we show that the function f is 1/μ-strongly convex if the farthest mapping Qμf is single-valued. When the function is the indicator function of a set, this recovers the well-known Chebyshev problem and Klee problem in Rn. We also give an example illustrating that a continuous proximal mapping (farthest mapping) needs not be locally Lipschitz, which answers one open question by Hare and Poliquin.  相似文献   

19.
Given a bounded domain Ω we consider local weak blow-up solutions to the equation Δpu=g(x)f(u) on Ω. The non-linearity f is a non-negative non-decreasing function and the weight g is a non-negative continuous function on Ω which is allowed to be unbounded on Ω. We show that if Δpw=−g(x) in the weak sense for some and f satisfies a generalized Keller-Osserman condition, then the equation Δpu=g(x)f(u) admits a non-negative local weak solution such that u(x)→∞ as x→∂Ω. Asymptotic boundary estimates of such blow-up solutions will also be investigated.  相似文献   

20.
For the lower sigma-exponent of the linear differential system ? = A(t)x, xR n , t ≥ 0, defined by the formula Δσ(A) ≡ infλ[Q]≤-σ λ 1(A + Q), σ > 0, on the basis of the lower characteristic exponents λ 1(A+Q) of perturbed linear systems with Lyapunov exponents λ[Q] ≤ ?σ < 0 of perturbations Q, we prove the following general form as a function of the parameter σ > 0. For any nondecreasing bounded function f(σ) of the parameter σ ∈ (0,+∞) that coincides with a constant on some infinite interval (σ 0,+), σ 0 ≥ 0, and satisfies the Lipschitz condition on the complementary interval (0, σ 0], we prove the existence of a linear system with coefficient matrix A f (t) bounded on the half-line [0,+∞) whose lower sigma-exponent Δσ(A f ) coincides with the function f(σ) on the entire interval (0,+∞).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号