首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The Co Mg O and Co Mn Mg O catalysts are prepared by a co-precipitation method and used as the catalysts for the synthesis of carbon nanotubes(CNTs) through the catalytic chemical vapor deposition(CCVD). The effects of Mn addition on the carbon yield and structure are investigated. The catalysts are characterized by temperature programmed reduction(TPR) and X-ray diffraction(XRD) techniques, and the synthesized carbon materials are characterized by transmission electron microscopy(TEM) and thermo gravimetric analysis(TG). TEM measurement indicates that the catalyst Co Mg O enclosed completely in the produced graphite layer results in the deactivation of the catalyst. TG results suggest that the Co Mn Mg O catalyst has a higher selectivity for CNTs than Co Mg O. Meanwhile, different diameters of CNTs are synthesized by Co Mn Mg O catalysts with various amounts of Co content, and the results show that the addition of Mn avoids forming the enclosed catalyst, prevents the formation of amorphous carbon, subsequently promotes the growth of CNTs, and the catalyst with decreased Co content is favorable for the synthesis of CNTs with a narrow diameter distribution.The Co Mn Mg O catalyst with 40% Co content has superior catalytic activity for the growth of carbon nanotubes.  相似文献   

2.
Aligned multi-walled carbon nanotubes (MWCNTs) with high purity and bulk yield were achieved on a silicon substrate by an aerosol-assisted chemical vapor deposition. The introduction of specific amounts of water vapor played a key role in in situ controlling the purity and surface defects of the nanotubes. The morphology, surface quality and structure of MWCNTs were characterized by secondary and backscattered electron imaging in a field emission scanning electron microscope (FESEM) and transmission electron microscope (TEM). Crystallinity and defects of the MWCNTs’ were investigated by high-resolution transmission electron microscopy (HRTEM) and Raman spectroscopy. In this work, water vapor was found to provide a weak oxidative environment, which enhanced and purified the MWCNTs’ growth. However, excessive water vapor would inhibit the MWCNTs growth with a poor surface quality. In addition, it has been found that the surface morphology of the CNTs can be modified intentionally through producing some surface defects by tuning the amount of the water vapor, which may offer more nucleation sites on the chemically inert CNT surface for various applications such as catalyst support.  相似文献   

3.
Individual multi-walled carbon nanotubes (CNTs) were deposited onto microelectrodes and embedded in nickel to achieve low-ohmic contact resistances. Electroless deposition of nickel onto gold/iron, palladium, and cobalt microelectrodes was used to form electrically stable bonds at the interfaces between the electrodes and CNTs. Resistance measurements showed that the contact resistances of the CNTs on gold/iron and palladium were significantly improved by nickel embedding, whereas no further improvement was found for the CNTs on cobalt. Electroless metal deposition is a parallel process providing stable electrical and mechanical contacts between CNTs and metallic microelectrodes. PACS 81.07.De  相似文献   

4.
以二茂铁和二甲苯分别作为催化剂和碳源,采用一种无模板的化学气相沉积法,使用单温炉设备,成功地制备了高度定向的碳纳米管阵列.分别用扫描电子显微镜、透射电子显微镜和电子能量散射谱、拉曼光谱对碳纳米管阵列进行形貌观察和表征, 并研究了不同工艺参数对碳纳米管阵列形貌的影响.结果表明:在生长温度为800℃,催化剂浓度为0.02g/mL,抛光硅片上容易获得高质量的定向碳纳米管阵列,在此优化条件下生长的定向碳纳米管的平均生长速率可达25μm/min.  相似文献   

5.
Carbon nanotubes have been grown using an electron cyclotron resonance (ECR) plasma source at a substrate temperature of 500 °C. Methane has been used as the source gas. A network of carbon nanotubes has been observed in scanning electron microscopy. Transmission electron microscopy revealed that the structure consists of straight, Y-junction and ring-like nanotubes. Further, electron diffraction of the nanotubes confirms a graphite crystal structure. PACS 81.16.He; 68.37.Lp; 68.37.Hk; 85.35.Kt; 75.75.+a  相似文献   

6.
A homogenous and adhesive multi-walled carbon nanotube (MWCNT) coating was electrophoretically deposited on stainless steel from an aqueous solution by applying high strength electric fields. Then, nickel was electrodeposited on MWCNT films. MWCNTs content in the composite coatings was reached to 12.5 wt% which was much higher than the content of MWCNTs in conventional nickel-MWCNT electrodeposited coatings. The hardness value of composite coatings significantly increased up to 870 Vickers which it was measured by both micro and nanohardness tests.  相似文献   

7.
We report on the basic physical quantities of boron nitride nanotubes (BNNTs), namely specific heat capacity and density, which have not been measured to date. A series of differential scanning calorimetry experiments were performed, and specific heat capacity was calculated for multi-walled BNNTs synthesized by chemical vapor deposition using boron and metal oxide as precursor. Very close specific heat capacity values were revealed for BNNTs and a BN powder of hexagonal (h-BN) phase. Densities of BNNTs were measured through density analyses of their epoxy composites. Our work is important as far as bulk properties of large amounts of BNNTs are crucial, for example, thermal property and density prediction for composite materials with BNNTs embedded.  相似文献   

8.
The effect of Fe and Ni catalysts on the synthesis of carbon nanotubes (CNTs) using atmospheric pressure chemical vapor deposition (APCVD) was investigated. Field emission scanning electron microscopy (FESEM) analysis suggests that the samples grow through a tip growth mechanism. High-resolution transmission electron microscopy (HRTEM) measurements show multiwalled carbon nanotubes (MWCNTs) with bamboo structure for Ni catalyst while iron filled straight tubes were obtained with the Fe catalyst. The X-ray diffraction (XRD) pattern indicates that nanotubes are graphitic in nature and there is no trace of carbide phases in both the cases. Low frequency Raman analysis of the bamboo-like and filled CNTs confirms the presence of radial breathing modes (RBM). The degree of graphitization of CNTs synthesized from Fe catalyst is higher than that from Ni catalyst as demonstrated by the high frequency Raman analysis. Simple models for the growth of bamboo-like and tubular catalyst filled nanotubes are proposed.  相似文献   

9.
Carbon nanotubes (CNTs) are classified among the most promising novel materials due to their exceptional physical properties. Still, optimal fabrication of carbon nanotubes involves a number of challenges. Whatever be the fabrication method, a process optimization can be evolved only on the basis of a good theoretical model to predict the parametric influences on the final product. The work reported here investigates the dependence of the deposition parameters on the controllable parameters for carbon nanotube growth during Chemical vapor deposition (CVD), through a chemical kinetic model. The theoretical model consisted of the design equations and the energy balance equations, based on the reaction kinetics, for the plug flow and the batch reactor, which simulate the CVD system. The numerical simulation code was developed in-house in a g++ environment. The results predicted the growth conditions for CNT: the deposition temperature, pressure and number of atoms, which were found to be influenced substantially by the initial controllable parameters namely the temperature, volumetric flow rate of the carbon precursor, and the reaction time. An experimental study was also conducted on a CVD system developed in the laboratory, to benchmark the computational results. The experimental results were found to agree well with the theoretical predictions obtained from the model.  相似文献   

10.
We present three different catalyst preparation and patterning techniques for plasma-enhanced chemical vapor deposition of carbon nanostructures from acetylene and ammonia mixtures. The different merits and potential areas of application are highlighted for each technique as compared to the benchmark of e-beam-lithography patterning. Maskless, focused ion beam written Pt can nucleate aligned carbon nanofibers, thereby allowing a sub-100 nm lateral resolution on non-planar substrate geometries combined with an in-situ monitoring. Ion beam milling additionally enables the pre-shaping and marking of the substrate, which is shown for the growth of individual nanofibers on the apex of commercial scanning probe tips. Pulsed electrochemical deposition was used to form Ni and Fe catalyst islands of controlled size and density. This is also demonstrated on complex substrate geometries such as carbon cloth. Nanocontact printing was employed to deposit a highly purified Co colloid in regular patterns with feature sizes down to 100 nm onto silicon wafers for low cost patterning over large areas. We analyze the catalyst restructuring upon exposure to elevated temperatures for each technique and relate this to the nucleated nanofiber dimensions and array densities. The flexibility in catalyst and substrate material allows a transfer of our achievements to catalyst-assisted growth of nanostructures in general facilitating their hierarchical device integration and future application. PACS 81.16.Rf; 81.16.Hc; 61.46.+w  相似文献   

11.
A discrete shell model is proposed to describe the radial deformation of carbon nanotubes under a hydrostatic pressure and the radial Young's modulus of (single- or multi-walled) nanotubes is obtained. It is found that the radial modulus decreases with increasing tube diameter while increases with increasing number of layers. The computational results agree well with the previous results of SWNTs and indicate that the radial modulus of carbon nanotubes is independent of the Poisson's ratio.  相似文献   

12.
Multiwall carbon nanotubes (MWNTs) filled with Fe nanoparticles (NPs) have been synthesized by thermal chemical vapor deposition of ferrocene alone as the precursor. The MWNTs were grown at different temperatures: 980 and 800 °C. Characterization of as-prepared MWNTs was done by scanning and transmission electron microscopy, and X-ray diffraction. The transmission electron microscopy study revealed that Fe NPs encapsulated in MWNTs grown at 980 and 800 °C are spherical and rod shaped, respectively. Room-temperature vibrating sample magnetometer studies were done on the two samples up to a field of 1 T. The magnetization versus magnetic field loop reveals that the saturation magnetization for the two samples varies considerably, almost by a factor of 4.6. This indicates that Fe is present in different amounts in the MWNTs grown at the two different temperatures.  相似文献   

13.
Uniform and well-aligned carbon nanotubes (CNTs) have been grown using a high density inductively coupled plasma chemical vapor deposition (ICP-CVD) system. A gas mixture of methane-hydrogen was used as the source and Ni as the catalyst for the CNT growth. The effect of process parameters, such as inductive RF power, DC bias voltage and CH4/H2 ratio, on the growth characteristics of CNTs was investigated. It was found that both plasma intensity and ion flux to the substrate, as controlled by the inductive RF power and DC bias voltage, respectively, can greatly affect the growth of CNTs. The relative importance of the generation of ions and the subsequent transport of ions to the substrate as serial process steps are considered as the two underlying factors in determining the growth characteristics of CNTs. PACS 81.05.Uw; 81.07.De; 81.15.Gh  相似文献   

14.
The nucleation of carbon caps on small nickel clusters is studied using a tight binding model coupled to grand canonical Monte Carlo simulations. It takes place in a well defined carbon chemical potential range, when a critical concentration of surface carbon atoms is reached. The solubility of carbon in the outermost Ni layers, that depends on the initial, crystalline or disordered, state of the catalyst and on the thermodynamic conditions, is therefore a key quantity to control the nucleation.  相似文献   

15.
Carbon nanotubes (CNTs) grown on electrospun polyacrylonitrile-based carbon nanofibers (CNFs) via chemical vapor deposition were studied in this paper. Analyses of Raman spectra and X-ray diffraction patterns revealed that incorporation of CNTs could improve the crystalline and structure integrity of the obtained CNFs/CNTs composite. About 7.4 wt% of CNTs were grown on the electrospun CNFs confirmed by thermal gravimetric analysis. The electrochemical results showed that the surface activity and the cycle retention of the CNFs/CNTs composite were enhanced due to its three-dimensional nanostructure, enhanced pore distribution, and good conductivity. The CNFs/CNTs composite offers a great potential for high-performance lithium-ion batteries as the electrode.  相似文献   

16.
Silicon enhances carbon nanotube growth on nickel films by chemical vapor deposition using methane and hydrogen. Nanotube growth characteristic is significantly improved on nickel films patterned by argon plasma etching on silicon oxide layers. Auger electron spectroscopy shows that a reduced silicon phase forms in the surface silicon oxide layer by Ar ion bombardment used for patterning. The enhanced growth of carbon nanotubes could be ascribed to an oxygen removal effect by silicon in the process of synthesis.  相似文献   

17.
Carbon nanosheets were synthesized by microwave plasma-enhanced chemical vapor deposition method on carbon nanotubes substrate which was treated by hydrogen plasma. The results showed that the diameters of carbon nanotubes first got thick and then “petal-like” carbon nanosheets were grown on the outer wall of carbon nanotubes. The diameters of carbon nanotubes without and with carbon nanosheets were 100-150 and 300-500 nm, respectively. Raman spectrum indicated the graphite structure of carbon nanotubes/carbon nanosheets. The hydrogen plasma treatment and reaction time greatly affected the growth and density of carbon nanosheets. Based on above results, carbon nanosheets/carbon nanotubes probably have important applications as cold cathode materials and electrode materials.  相似文献   

18.
Arc-produced carbon multi-walled nanotubes (MWNTs) were fluorinated at 420 °C in a flow of diluted F2 gas containing small admixture of HF gas. Fluorinated materials (F-MWNTs) with 10–55 wt.% fluorine content were studied by XPS. It was shown that fluorination begins at the external layers of nanotubes and the reaction front propagates inside the multi-layer particles in concert with structural deterioration of graphene layers. The C2F stoichiometry still allows MWNT wall integrity, similar to known for SWNTs. The fluorine contents in the product can noticeably exceed this higher fluorine limit for tube stability. The position of the F 1s line at 688.2 eV does not depend on the fluorine concentration. Nearly covalent C–F bonds dominate the F-MWNT samples, with a small quantity (2–9%) of ionic bonds also present. Fluorinated carbon tends to spatially separate from non-fluorinated carbon.  相似文献   

19.
The theoretical analysis of propagation of guided waves in the multi-walled carbon nanotubes is presented within the framework of the classical electrodynamics. Electronic excitations of each wall of the system are modeled as an infinitesimally thin cylindrical layer of the π-electrons, whose dynamics are described by means of the fluid theory. General expressions of dispersion relations are obtained for the electromagnetic wave with the transverse magnetic and transverse electric modes, respectively, by solving Maxwell and fluid equations with appropriate boundary conditions.  相似文献   

20.
Chemical vapor deposition of diamond   总被引:2,自引:0,他引:2  
In the recent decade a multitude of diamond thin film production methods has been developed, generally based on chemical vapor deposition processes from thermally or plasma activated gas phases. Diagnostic studies, growth experiments and numerical kinetic investigations have in recent years lead to an improved understanding of the prerequisites of continuous diamond growth and of the chemical processes involved. While the mechanism of carbon incorporation into the diamond surface is not yet known completely, the gas-phase species which are essential in a diamond-growth atmosphere can be narrowed to a small number, whose role in the gas-phase chemistry is quite well known.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号