首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Journal of Thermal Analysis and Calorimetry - Poly(ethylene oxide)/polyhedral oligomeric silsesquioxanes (PEO/POSSs) composites were prepared by the melting method. The investigation of their...  相似文献   

2.
PS/PPSQ blends with different compositions were prepared by two methods: (1) casting film of PS/PPSQ from the solution of two polymers, and (2) PS/PPSQ blends by in situ polymerization. After studying by solid-state NMR, PS and PPSQ in the casting films are miscible on the scale of several thousand nanometers. Miscibility of PS/PPSQ blends obtained by the second approach was investigated by DMA, SEM, x-ray energy spectrometer, x-ray diffraction, and fluorescence techniques. Only one glass transition temperature could be observed in their DMA curves. There are two phases observable in their SEM micrographs. X-ray diffraction patterns and fluorescence excited spectra of this blend indicate that there is some interaction between molecules of PS and PPSQ in both the continuous phase and dispersed phase. PS and PPSQ in the in situ blends are partially miscible when the percentage of PPSQ is not more than 10%. © 1996 John Wiley & Sons, Inc.  相似文献   

3.
A novel poly(methyl methacrylate-co-polyhedral oligomeric silsesquioxane) hybrid nanocomposite was synthesized by free radical polymerization and characterized by ~1H NMR,~(29)Si NMR,and TGA technologies.Compared with PMMA homopolymer, the nanocomposite has better thermal stability.  相似文献   

4.
Unsaturated polyester (UP)-POSS hybrid nanocomposites have been developed successfully through the reaction between maleimide groups Octa (maleimido phenyl) silsesquioxane (OMPS) and olefinic reactive sites (maleimide and styrenic units) present in the unsaturated polyester resin system through free radical polymerization using benzoyl peroxide (BP) as the initiator. The hybrid molecular structure of nanocomposites resulted was evaluated by FT-IR spectroscopy. The data obtained from XRD, SEM and TEM analysis ascertain the presence of homogeneous morphology and nanoscale dispersion of OMPS into the polyester hybrid nanocomposites. Data resulted from thermal (DSC and TGA) and thermo-mechanical (DMA) studies indicated that the incorporation of octamaleimide functionalized POSS into unsaturated polyester systems appreciably improved the thermal properties of the hybrid nanocomposites according to their percentage concentration.  相似文献   

5.
Linear isocyanate‐terminated poly(urethane‐imide) (PUI) with combination of the advantages of polyurethane and polyimide was directly synthesized by the reaction between polyurethane prepolymer and pyromellitic dianhydride (PMDA). Then octaaminophenyl polyhedral oligomeric silsesquioxane (OapPOSS) and PUI were incorporated into the epoxy resin (EP) to prepare a series of EP/PUI/POSS organic–inorganic nanocomposites for the purpose of simultaneously improving the heat resistance and toughness of the epoxy resin. Their thermal degradation behavior, dynamic mechanical properties, and morphology were studied with thermal gravimetric analysis (TGA), dynamic mechanical analysis (DMA), and transmission electron microscope (TEM). The results showed that the thermal stability and mechanical modulus was greatly improved with the addition of PUI and POSS. Moreover, the EP/PUI/POSS nanocomposites had lower glass transition temperatures. The TEM results revealed that POSS molecules could self assemble into strip domain which could switch to uniform dispersion with increasing the content of POSS. All the results could be ascribed to synergistic effect of PUI and POSS on the epoxy resin matrix. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
Octa(maleimido phenyl) silsesquioxane (OMPS) was prepared from octa(aminophenyl) silsesquioxane (OAPS) and maleic anhydride. Initially, octaphenyl silsesquioxane was prepared, and it was nitrated to obtain octa(nitrophenyl) silsesquioxane; subsequently, reduction was carried out to obtain OAPS. These compounds were characterized with Fourier transform infrared, NMR, gel permeation chromatography, and wide‐angle X‐ray diffraction. Differential scanning calorimetry scans of OMPS showed an exotherm above 100 °C, and it was attributed to the curing. The peak maximum temperature depended on the heating rate. Both Ozawa's and Kissinger's methods were used to determine the activation energy for the curing reaction, which was approximately 29 kcal/mol. OMPS was copolymerized with various molar percentages of (1) N,N′‐p‐phenylenedimaleimide (PPMI) and (2) urethane methacrylate (UMA) by thermal and free‐radical polymerization, respectively. The copolymers were characterized with differential scanning calorimetry, dielectric analysis, thermogravimetric analysis, and wide‐angle X‐ray diffraction. In the PPMI and UMA copolymer series, the glass‐transition temperature increased with an increase in the OMPS concentration. The permittivity of the UMA copolymers decreased and tan δ increased with an increase in the OMPS concentration. In air and nitrogen atmospheres, the thermal stability of the PPMI and UMA copolymers increased with an increase in the OMPS concentration. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 2483–2494, 2005  相似文献   

7.
Octa(propylglycidyl ether) polyhedral oligomeric silsesquioxane (OpePOSS) was used to prepare the polybenzoxazine (PBA‐a) nanocomposites containing polyhedral oligomeric silsesquioxane (POSS). The crosslinking reactions involved with the formation of the organic–inorganic networks can be divided into the two types: (1) the ring‐opening polymerization of benzoxazine and (2) the subsequent reaction between the in situ formed phenolic hydroxyls of PBA‐a and the epoxide groups of OpePOSS. The morphology of the nanocomposites was investigated by means of scanning electron microscopy, transmission electron microscopy, and atomic force microscopy. Differential scanning calorimetry and dynamic mechanical analysis showed that the nanocomposites displayed higher glass‐transition temperatures than the control PBA‐a. In the glassy state, the nanocomposites containing less than 30 wt % POSS displayed an enhanced storage modulus, whereas the storage moduli of the nanocomposites containing more than 30 wt % POSS were lower than that of the control PBA‐a. The dynamic mechanical analysis results showed that all the nanocomposites exhibited enhanced storage moduli in the rubbery states, which was ascribed to the two major factors, that is, the nanoreinforcement effect of POSS cages and the additional crosslinking degree resulting from the intercomponent reactions between PBA‐a and OpePOSS. Thermogravimetric analysis indicated that the nanocomposites displayed improved thermal stability. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1168–1181, 2006  相似文献   

8.
The surface morphology of dewetting poly(tert-butyl acrylate) (PtBA) and trisilanolphenyl-POSS (TPP) bilayers has been studied as a function of time at 95 degrees C. For short annealing times, only the upper nanoparticle (TPP) layer dewets from the underlying PtBA layer. The number and lateral dimensions of the holes in the upper TPP layer increase with increasing annealing times, forming interconnected rim structures. At later annealing times, scattered holes that reach down into the PtBA layer are observed among the interconnected rim structures. Fractal nanofiller (TPP)-rich aggregates are found at the bottom of the scattered holes.  相似文献   

9.
Phase separation in thin film blends of poly(tert-butyl acrylate) (PtBA) and a polyhedral oligomeric silsesquioxane (POSS), trisilanolphenyl-POSS (TPP), is studied as functions of annealing temperature and time, using reflected light optical microscopy, atomic force microscopy, and X-ray photoelectron spectroscopy. The results demonstrate that the PtBA/TPP blend system confined to thin films ( approximately 90 nm) exhibits lower critical solution temperature (LCST) behavior with a critical temperature of approximately 70 degrees C and a critical composition of 60 wt % PtBA with insignificant dewetting at the phase boundary. Off-critical spinodal behavior is observed for 58 and 62 wt % PtBA blend films. Phase separation by nucleation and growth is observed for all compositions outside the window between 58 and 62 wt % PtBA. The temporal evolution of spinodal decomposition in 60 wt % PtBA blend films is explored at annealing temperatures of 75, 85, 95, and 105 degrees C. The morphological evolution in 60 wt % PtBA blend films is similar for all experimental temperatures (75, 85, 95, and 105 degrees C) with the expected shorter time scales for phase evolution at higher annealing temperatures. Fast Fourier transforms of optical micrographs reveal that these blend films immediately undergo phase separation by spinodal decomposition during temperature jump experiments. Power law scaling for the characteristic wavevector with time (q approximately t(n) with n approximately -1/4 to -1/3) for domain growth during the early stages of phase separation yields to domain pinning at the later stages for 60 wt % PtBA blend films annealed at 75, 85, and 95 degrees C. In contrast, domain growth is pinned over the entire experimental time scale for 60 wt % PtBA blend films annealed at 105 degrees C.  相似文献   

10.
Nanocomposites composed of a poly(vinylidene fluoride) (PVDF) matrix and 0, 3, 5, and 8 wt % fluoropropyl polyhedral oligomeric silsesquioxane (FP‐POSS) were prepared by using the solvent evaporation method. The morphology and the crystalline phase of the nanocomposites were investigated by digital microscopy, scanning probe microscopy, X‐ray diffractometer, and Fourier transform infrared spectroscopy. FP‐POSS acted as nucleating agent in PVDF matrix. A small content of FP‐POSS resulted in an incomplete nucleation of PVDF and generated bigger spherical particles, whereas higher contents led to a complete nucleation and formed more separate and less‐crosslinked particles. Nanoindentation, nanoscratch, and nanotensile tests were carried out to study the influence of different contents of FP‐POSS on the key static and dynamic mechanical properties of different systems. The nanocomposite with 3 wt % FP‐POSS was found to possess enhanced elastic properties and hardness. However, with the increase of the FP‐POSS content, the elastic modulus and hardness were found to decrease, and the improvement on stiffness was negative at contents of 5 and 8 wt %. Compared with neat PVDF, the scratch resistance of the PVDF/FP‐POSS nanocomposites was decreased due to a rougher surface derived from the bigger spherulites. Nanotensile testing results showed both the stiffness and toughness of PVDF‐FP3% were enhanced and further additions of FP‐POSS brought dramatic enhancements in toughness while associated with a decline in stiffness. Dynamical mechanical properties indicated the viscosity of the nanocomposites increased with the increasing FP‐POSS contents. © 2012 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2012  相似文献   

11.
A new series of four different linear aliphatic ether linked aromatic bismaleimides (AEBMIs) were synthesized from the respective linear aliphatic ether-linked aromatic diamines and maleic anhydride. Further, the POSS-AEBMI nanocomposites were developed by Michael addition reaction of bismaleimide with varying mass percentages of octa(aminophenyl)silsesquioxane and were characterized by the fourier transform infrared spectroscopy, differential scanning calorimetry, and thermogravimetric analysis. Data from thermal studies revealed that the POSS-reinforced AEBMI nanocomposites possesses higher glass transition temperature (Tg), thermal stability, limiting oxygen index, and lower dielectric constant when compare to that of neat AEBMI. X-ray diffraction and transmission electron microscopy analysis confirmed the molecular level dispersion of POSS in the AEBMI matrix.  相似文献   

12.
Cyanate ester (PT‐15, Lonza Corp) composites containing the inorganic–organic hybrid polyhedral oligomeric silsesquioxane (POSS) octaaminophenyl(T8)POSS [ 1 ; (C6H4NH2)8(SiO1.5)8] were synthesized. These PT‐15/POSS‐ 1 composites (99/1, 97/3, and 95/5 w/w) were characterized by X‐ray diffraction (XRD), transmission election microscopy (TEM), dynamic mechanical thermal analysis, solvent extraction, and Fourier transform infrared. The glass‐transition temperatures (Tg's) of the composite with 1 wt % 1 increased sharply versus the neat PT‐15, but 3 and 5 wt % 1 in these cyanate ester composites depressed Tg. All the PT‐15/POSS composites exhibited higher storage modulus (E′) values (temperature > Tg) than the parent resin, but these values decreased from 1 to 5 wt % POSS. The loss factor peak intensities decreased and their widths broadened upon the incorporation of POSS. XRD, TEM, and IR data were all consistent with the molecular dispersion of 1 due to the chemical bonding of the octaamino POSS‐ 1 macromer into the continuous cyanate ester network phase. The amino groups of 1 reacted with cyanate ester functions at lower temperatures than those at which cyanate ester curing by cyclotrimerization occurred. In contrast to 1 , 3‐cyanopropylheptacyclopentyl(T8)POSS [ 2 ; (C5H9)7(SiO1.5)8CH2CH2CH2CN] had low solubility in PT‐15 and did not react with the resin below or at the cure temperature. Thus, phase‐separated aggregates of 2 were found in samples containing 1–10 wt % 2 . Nevertheless, the Tg and E′ values (temperature > 285 °C) of these composites increased regularly with an increase in 2 . © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 3887–3898, 2005  相似文献   

13.
This paper reports on the migration of POSS‐based nanocomposites both by annealing the melt and by heating the solid blend in the microwave oven. The migration proceeds to all surfaces of the sample as verified by ATR‐FTIR spectra of the bottom and top surfaces. Concentrations of POSS on the surface, exceeding 50%, are obtained. Polarity of the matrix increases POSS migration. During annealing at 190°C, a sublimation of POSS from the upper surface occurs. In air, sublimation is decreased by oxidizing the organic side groups of POSS and the PP to non‐volatile moieties. No sublimation occurs below 100°C. The AFM and SEM‐EDAX verified the high POSS concentration on the surface and indicated very pronounced roughness of the surface of the sample. The static contact angle measurements reveal very high hydrophobicity as well as low surface free energy (SFE) of the surface of the sample, which is close to that of Teflon and of pristine POSS. The migration of POSS is due to its lower surface tension, the entropy considerations, its lower cohesive energy with the matrix chains as compared to the cohesion energy between the chains, and the density and temperature fluctuations of the matrix chains which upon relaxation repulse and propel POSS to the surfaces. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

14.
Serials of halloysite nanotubes/polystyrene (HNTs/PS) nanocomposites with different contents of organo-modified halloysite nanotubes (organo-HNTs) were successfully prepared by the in situ bulk polymerization of styrene with the organo-HNTs as macromonomers. The percentage of grafting (PG%) of more than 230% was achieved, calculated from the results of the thermogravimetric analysis (TG). The TG results also showed that the thermal stabilities of the HNTs/PS nanocomposites prepared via the bulk polymerization were better than the pure polystyrene. And the maximum thermal degradation temperature of the nanocomposites increased with the increasing of the amount of the HNTs fillers added.  相似文献   

15.
Epoxy/polyhedral oligomeric silsesquioxane (POSS) nanocomposites were obtained from octakis(glycidyldimethylsiloxy)octasilsesquioxane (OG) and diglycidyl ether of bisphenol A cured with small‐molecule curing agents of diethylphosphite (DEP) and dicyandiamide (DICY). An increase in the POSS contents of the nanocomposites and an improvement in the nanocomposite homogeneity were observed with the use of the small‐molecule curing agents. Phosphorus in DEP and nitrogen in DICY also performed synergism with POSS for thermal stability enhancement and flammability improvement in the nanocomposites. The nanocomposites possessing high OG contents exhibited good thermal stability, improved flammability, and high storage moduli. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3825–3835, 2006  相似文献   

16.
We have synthesized a polyhedral oligomeric silisesquioxane (POSS) derivative containing eight acetoxystyryl functional groups [octa(acetoxystyryl)octasilsesquioxane (AS‐POSS)] and then blended it with phenolic resin to form nanocomposites stabilized through hydrogen bonding interactions between the phenolic resin's hydroxyl group and the AS‐POSS derivative's carbonyl and siloxane groups. One‐ and two‐dimensional infrared spectroscopy analyses provided positive evidence for these types of hydrogen bonding interactions. In addition, we calculated the interassociation equilibrium constant, based on the Painter–Coleman association model (PCAM), between phenolic resin and POSS indirectly from the fraction of hydrogen‐bonded carbonyl groups; quantitative analyses indicate that the hydroxyl–siloxane interassociation from the PCAM is entirely consistent with the classical Coggesthall and Saier (C and S) methodology. From a thermal analysis, we observed that the miscibility between phenolic and AS‐POSS occurs at a relatively low AS‐POSS content, which characterizes this mixture as a polymer nanocomposite system. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 673–686, 2006  相似文献   

17.
Diffusion coefficient of oxygen penetrating into polystyrene (PS) latex/poly (N‐isopropylacrylamide) (PNIPAM) microgel composite films were measured using Fluorescence technique. Three different (5, 15, and 40 wt%) PS content films were prepared from PS/PNIPAM mixtures. Diffusivity of PS/PNIPAM composite films were studied by diffusion measurements which were performed over the temperature range of 24–70°C. Pyrene was used as the fluorescent probe. The diffusion coefficients (D) of oxygen were determined using the Stern–Volmer fluorescence quenching method combined with Fickian transport and were computed as a function of temperature for each PS content film. The results showed that D values were strongly dependent on both temperature and PS content in the film. Diffusion energies were measured and found to be dependent on the composition of the composite films. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

18.
A novel giant surfactant possessing a well-defined hydrophilic head and a hydrophobic polymeric tail, polystyrene-(carboxylic acid-functionalized polyhedral oligomeric silsesquioxane) conjugate (PS-APOSS), has been designed and synthesized via living anionic polymerization, hydrosilylation, and thiol-ene "click" chemistry. PS-APOSS forms micelles in selective solvents, and the micellar morphology can be tuned from vesicles to wormlike cylinders and further to spheres by increasing the degree of ionization of the carboxylic acid. The effect of APOSS-APOSS interactions was proven to be essential in the morphological transformation of the micelles. The PS tails in these micellar cores were found to be highly stretched in comparison with those in traditional amphiphilic block copolymers, and this can be explained in terms of minimization of free energy. This novel class of giant surfactants expands the scope of macromolecular amphiphiles and provides a platform for the study of the basic physical principles of their self-assembly behavior.  相似文献   

19.
A novel polyhedral oligomeric silsesquioxane containing 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO-POSS) has been incorporated into polycarbonate (PC) composites in order to study its effect on mechanical and thermal properties and flame retardancy. The mechanical and thermal properties of the DOPO-POSS/PC composites have been investigated by tensile and flexural testing, DSC, and DMA. Slight enhancements of yield stress, and flexural strength and modulus, and obvious decreases of fracture strength and strain of the DOPO-POSS/PC composites were observed with an increase in DOPO-POSS loading. The glass transition temperatures (Tg) of the composites were reduced with increasing DOPO-POSS loading. The morphology of the PC composites was evaluated by SEM, which indicated that the DOPO-POSS was dispersed with a particle size of 100-250 nm in the PC matrix. The thermal degradation behaviour and flame retardancies of PC composites with different DOPO-POSS loadings were investigated by TGA, LOI, UL-94 standard, and cone calorimetry. The composite had an LOI value of 30.5 and a UL-94 rating V-0 when the content of DOPO-POSS was 4%.  相似文献   

20.
Polystyrene (PS)/layered double hydroxides (LDHs) composites were prepared for the first time from LDHs aqueous suspension and PS emulsion by electrostatic assembly. The morphology characterization based on XRD and TEM showed that the LDHs were partially exfoliated in PS matrix. By using a reactive emulsifier, i.e., sodium 2-hydroxyl-3-(methacryloxy)propane-1-sulfonate (HMPS), which was able to copolymerize with styrene, a strong polymer-LDHs platelets interaction was achieved. The glass transition temperature (T g ) of the composites was measured by DSC and DMA. The results showed that a strong polymer-LDHs platelets interaction played a dominant role in affecting the mobility of polymer chains, i.e., the T g . With a strong interaction, PS-HMPS/LDHs composite showed a significant enhancement in T g while a slight increase in T g was observed for PS-SDS (PS prepared by emulsion polymerization using sodium dodecyl sulfate as emulsifier)/LDHs composite with a weak interaction. The addition of LDHs improved the thermal stability of PS, and the improvement depended on the dispersion of the LDHs platelets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号