首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
Cu-based quaternary shape memory alloys were extensively investigated alloy in last decade. In this study, Cu–Al–Mn, Cu–Al–Mn–V and Cu–Al–Mn–Cd shape memory alloys were produced by arc melting. We have investigated the effects of the alloying elements on the characteristic transformation temperatures, variations in structure and microstructure. The characterization of the transformation temperatures was studied by the differential scanning calorimetry. It was observed that the addition of the vanadium and cadmium decreases the characteristic transformation temperatures. The structural changes of the samples were studied by X-ray diffraction measurements and optical microscope observations. The crystal structure of the martensite Cu–Al–Mn, Cu–Al–Mn–V and Cu–Al–Mn–Cd shape memory alloys were identified as M18 at room temperature. The crystallite sizes of the alloys were determined. The microstructure of the alloy was studied with the help of optical microscope and V-type martensites with different orientations were detected. Microhardness value of the alloys were found between 194 and 211 Hv.  相似文献   

5.
The effect of Ti additions on the microstructure and mechanical properties of Cu–Al–Ni shape memory alloys (SMA) was studied by means of a differential scanning calorimeter, field emission scanning electron microscopy, transmission electron microscopy, X-ray diffraction (XRD), a tensile test, a hardness test, and a shape memory effect test. The experimental results show that the Ti additions have an effective influence on the phase transformation behavior through generating a new phase into the microstructure, which is known as X-phase and/or controlling the grain size. The results of the XRD confirmed that the X-phase is a combination of two compounds, AlNi2Ti and Ti3·3Al. Nevertheless, it was found that with 0.7 mass% of Ti, the best phase transformation temperatures and mechanical properties were obtained. These improvements were due to the highest existence of the X-phase into the alloy along with a noticeable decrement of grain size. The Ti additions to the Cu–Al–Ni SMA were found to increase the ductility from 1.65 to 3.2 %, corresponding with increasing the strain recovery by the shape memory effect from 50 to 100 %; in other words, a complete recovery occurred after Ti additions.  相似文献   

6.
Cu–Al–Ni shape memory alloys are good candidates for high temperature applications. We have investigated the effects of alloying elements on transformation temperatures, heat-capacity values, and structural properties of Cu–13.73Al–4.3Ni and Cu–13Al–4.3Ni (wt%) shape memory alloys. The evolution of the transformation temperatures was studied by differential scanning calorimetry with different heating/cooling rates. The heat-capacity measurements of the samples were made. It was found that the mass percentage of the alloying element has an important effect on the characteristic transformation temperatures and thermodynamic parameters. The structural changes of the samples were studied by X-ray diffraction measurements and optical microscope observations at room temperature. It is evaluated that the transformation parameters of CuAlNi shape memory alloy can be controlled by the change of the mass percentages of the alloying elements.  相似文献   

7.
In this study, variations in the transformation temperature, crystal structure, and microstructure of the arc melted alloy having nominal composition of Cu–13%Al–4%Ni–4%Fe (in mass%) were investigated for two different treatment conditions, homogenized and heat treated at 950 °C for 1 h. For both conditions, transformation temperature of the alloy was examined by DSC and it was determined as ~200 °C, similar to the value for Cu–Al–Ni alloys given in the literature. The crystal structure of the martensite Cu–13%Al–4%Ni–4%Fe (in mass%) alloy was identified as 18R using XRD. By heat treatment performed at 950 °C, diffraction peaks become more distinct. The microstructure of the alloy was studied with the help of optical microscope as a result of which parallel martensite plates and precipitates were detected. Microhardness value of the alloy was found as 361 and 375 Hv for homogenized and heat-treated conditions, respectively.  相似文献   

8.
Cu–Zn–Sn shape memory alloy strips with composition range of 13.70–46.30 mass% Sn were fabricated by electrodepositing Sn on a shim brass surface and then subsequently annealed at a constant temperature of 400 °C for 120 min under flowing nitrogen. Subjecting the Sn-plated strips to differential scanning calorimetry (DSC) analysis revealed that the austenitic start (A s) temperature was essentially constant at 225 °C while the martensite start (M s) temperature was consistently within the 221.5–222 °C interval. Austenite to martensite phase transformation showed two distinct peaks on the DSC thermogram which can be attributed to the non-homogeneity of the bulk Cu–Zn–Sn ternary alloy. The latent heats of cooling and heating were found to increase with the mass% Sn plated on the shim brass. Effect of annealing temperature was also investigated wherein strips with an essentially constant composition of 26 mass% Sn were annealed at a temperature range of 350–420 °C for 120 min under flowing nitrogen. Varying the annealing temperature has no significant effect on the transformation temperatures of the ternary alloy.  相似文献   

9.

The hardening of the Al–Zn–Mg alloys during ageing process is based on very complex phase transformations. In order to contribute to the comprehension of these phenomena, we proceed to study the phase transformations of 7020 alloy using differential scanning calorimetry and X-ray diffraction analysis. The results confirm the formation of hardening phase GP zones, intermediate hardening metastable phase η′ and the equilibrium phase η. The calorimetric and X-ray diffraction results are in good agreement and confirm the successive precipitation/dissolution sequence. The dissolution of the precipitates is accompanied by the increase in the crystallographic lattice parameter due to the increase in solid solution concentration and by the softening of the material. On the contrary, the precipitation produces a lower concentration of the Zn/Mg solutes in the Al matrix, which generates a decrease in the lattice parameter value. These precipitates produce the hardening of the alloy. The sequence of phase formation and dissolution explains the evolution of the 7020 hardness as a function of the ageing temperature.

  相似文献   

10.
The effect of a Hf chloride activator on the pack cementation of Hf powder on a Ni–Ti shape memory alloy wire was investigated. For this purpose, a Ni–Ti wire with a diameter of 0.5 mm was pack cemented in a powder mixture consisting of Hf and HfCl4 powders at 1000 °C for 24 h. It was observed that Hf noticeably diffused into the Ni–Ti matrix with the aid of the HfCl4 activator. The diffusion distance significantly increased as the amount of HfCl4 activator increased. By the addition of 10 mass% HfCl4, the martensite-to-austenite phase transformation start and finish temperatures increased from 12 to 142 °C and from 28 to 200 °C, respectively. The diffusion kinetics model was established based on Fick’s first law. It is suggested that 48 h of halide-activated pack cementation with 10 wt% HfCl4 is necessary to increase the overall Hf content above 15 at.% throughout the Ni–Ti wire.  相似文献   

11.
12.
Journal of Thermal Analysis and Calorimetry - Cu–Al–Be polycrystalline SMAs modified with the addition of inoculants show improved ductility, which accredits them for technological...  相似文献   

13.
Journal of Thermal Analysis and Calorimetry - In this study, CuAl13?xTax (% mass x?=?1; 1.5; 2; 2.5) shape-memory alloys were produced through arc-melting method. Phase...  相似文献   

14.
15.
16.
Journal of Thermal Analysis and Calorimetry - In this study, four Cu–Al–Fe–X shape memory alloys were produced by the arc melting technique, and the martensitic transformation...  相似文献   

17.
Beryllium precipitation from the Cu-rich matrix in a Cu–2 mass% Be–0.2 mass% Mg alloy homogenized and quenched from 1073 K was studied by differential scanning calorimetry (DSC). The DSC traces showed two main exothermic effects, A and B, each comprising two subeffects: A1 and A2 , and B1 and B2 respectively. Effects A1 and A2 correspond to the precipitation of GP zones and subsequent overlapping and independent precipitation of the phase. Only at very low heating rates can be inherited from GP zones. Effects B1 and B2 correspond to heat evolved during transitions to the states with and phases, respectively. Heat effect A can be quantitatively described in terms of solid solubilities before and after precipitation, and of the precipitation heats of the phases involved. The heat content of the combined GP zone/ phase precipitation effect was proportional to the number of beryllium atoms precipitated, yielding an average value of 21 kJ mol–1 beryllium for beryllium precipitation. It was shown that the phase arises from the combined transition from states with GP zones and phases, whereas arises from the transition of states with and phases. The apparent activation energies associated with GP zones and , and phases are 1.16±0.08, 1.18±0.07, 1.37±0.08 and 1.74±0.09 eV, respectively. These values are discussed in terms of the mobility of dissolved atoms related to the concentrations of excess vacancies and solute-vacancy complexes, and the direction of plate-like precipitate growth (either normal or perpendicular to the plate). It is inferred that the main roles of magnesium are to decrease the amount and rate of GP formation, to enhance the volume fraction of and to suppress the discontinuous precipitation of .This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

18.
A systematic study on the corrosion and passivation behavior of AZ91D alloy in relation to the influence of concentration, temperature, pH, and immersion time was made in aqueous sulfate solution using electrochemical techniques including open-circuit potential, potentiodynamic polarization and impedance spectroscopy. It was found that the corrosion and pitting potentials (E corr and E pit) of the alloy drift to more active values with increasing either concentration (0.01–1.0 M) or temperature (278–338 K) of the test solution, suggesting that sulfate solution enhances the alloy dissolution, particularly at higher temperatures. On the other hand, values of the total film resistance (R T) indicate that neutral solution (pH 7.0) supports the formation of a better protective layer on AZ91D surface than alkaline (pH 12.5) or acidic (pH 1.0) medium. The growth of a protective film on the alloy surface at short immersion times (up to ∼50 h) is evinced by a rapid positive evolution of E corr and fast decrease in the corrosion rate (i corr). However, for a long-term exposure (up to 500 h) E corr drifts negatively and i corr increases due to breakdown of the protective film, which causes a decrease in the alloy stability. Fitting the impedance data to equivalent circuit models suitable to each behavior assisted to explore the mechanism for the attack of the sample surface at various testing times. The results obtained from the three studied electrochemical techniques are in good agreement.  相似文献   

19.
Journal of Thermal Analysis and Calorimetry - Homogenization heat treatment is the first step in the processing of aluminium alloys, which for most alloys is carried out before any deformation...  相似文献   

20.
Journal of Thermal Analysis and Calorimetry - The purpose of the presented work is to answer the questions: how does the addition of strontium to the Zn–8Al–1Cu alloy crystallisation...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号