首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 16 毫秒
1.
Research on photocatalytic degradation rate of azo dyes using nano-strontium titanate in photocatalysis process was the main goal of present study. In this regard, the influence of the main operating parameters such a photocatalyst concentration, dye concentration, temperature, pH and the presence of hydrogen peroxide upon dye removal rate under UV irradiation was studied. The absorbance of samples was measured by a UV–Vis spectrophotometer. The structure and morphology of nano-powder were investigated using scanning electron microscopy and crystalline structure by X-ray diffraction spectroscopy. The results reveal that nano-strontium titanate has high and significant photocatalytic activity and in comparison with nano-titanium dioxide was superior photocatalyst.  相似文献   

2.
Desulfurization of organic sulfides in hydrocarbon solvents in the presence of aqua complexes of metal chlorides H[MAlCl4OH] that exhibit lower acidity as compared to AlCl3 proceeds under mild conditions (450–525 K, atmospheric pressure) without external introduction of hydrogen. The process occurs with cleavage of C-S bonds and through intermediate formation of mercaptans to give H2S and the corresponding hydrocarbons. The reaction is accompanied by cleavage of C-C bonds in the groups surrounding the organosulfur moiety, in thiacyclane rings, as well as in hydrocarbon solvent molecules, resulting in the formation of a wide spectrum of gaseous and liquid products.Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 10, pp. 1998–2002, October, 1995.  相似文献   

3.
Heteroparticles with anisotropic structure have emerged as a focus of research. They contain two distinct sides with different composition, structures, ionization potential and surface chemistry. The asymmetric structure allows a tuning of chemical, optical, electrical, magnetic, mechanical and thermodynamic properties within a single particle by controlling composition, size, shape and organization at the nanoscale. Here we report the preparation of AuCu@ZnO heteroparticles using non-aqueous solution chemistry by in situ alloying of the metal domains of AuCu@ZnO nanoparticles. The size, shape and optical properties of the AuCu@ZnO hybrid nanoparticles were characterized by transmission electron microscopy and UV–visible spectroscopy. The nanocrystals have a multipod-like morphology with ZnO domains connected to an AuCu alloy core. The AuCu@ZnO nanoparticles showed a pronounced red-shift of the plasmon band compared to Au@ZnO heteroparticles. The crystal structure and phase purity were confirmed by X-ray powder diffraction. Surface-functionalization with imidazole-type ligands rendered the AuCu@ZnO nanoparticles water soluble. The AuCu@ZnO alloy heteroparticles showed an enhanced activity compared to Au@ZnO for the photocatalytic degradation of organic pollutants, as demonstrated with the model compound rhodamine B.  相似文献   

4.
光催化降解染料ZnO催化剂的性能   总被引:13,自引:2,他引:13  
光催化法是20世纪70年代发展起来的新型水处理技术,即以某些半导体材料为催化剂,利用光催化法来降解环境污染物。该方法工艺简单,成本较低,在常温下能使大多数不能或难于生物降解的有毒有机物彻底氧化分解。近年来研究最多的是TiO2,由于其带隙较宽(3.2eV),只能吸收波长λ≤387nm的紫外光,因此研制新型光催化剂仍是重要课题。  相似文献   

5.
Xie  Linbei  Li  Ao  Zhou  Sijie  Zhang  Min  Ding  Yi  Wang  Ping 《Research on Chemical Intermediates》2021,47(6):2373-2391
Research on Chemical Intermediates - Ag/AgCl/ZnTiO3 nanohybrids were assembled by the photoreduction–precipitation assisted with ultrasonic method. Rhodamine B (RhB), methylene blue (MB) and...  相似文献   

6.
光催化法是近年来发展较快的一种环境治理技术,掺杂型TiO_2催化剂是当前研究的焦点之一.以四氯化钛为主要原料,利用简单的溶胶法制备了纳米TiO_2、Fe/TiO_2粉体,研究发现掺杂铁,能够有效地延缓锐钛矿型TiO_2向金红石型TiO_2的转变,提高Fe/TiO_2粉体的光催化活性,并且500℃焙烧后的Fe/TiO_2催化剂,在紫外光下催化活性较好.  相似文献   

7.
8.
In situ atomic force microscopy (AFM) images of crystals of organic dyes alizarin, indigo and morin have been monitored during the course of their solid-state electrochemical oxidation/reduction in contact with aqueous acetate buffer. Such images indicate that proton-assisted reduction and oxidation processes are localized in a shallow layer in the vicinity of the particle/electrolyte interface, in agreement with expectances from the Lovric and Scholz model with significantly restricted proton diffusion across the solids.  相似文献   

9.
利用微波水热法制备单斜白钨矿型BiVO4为光催化剂,探讨其对抗生素类污染物的去除效果.同时利用X射线衍射(XRD)、傅里叶红外(FT-IR)和场发射扫描电镜(FE-SEM)等测试手段对样品结构和性能进行了表征.以四环素(TC)和环丙沙星(CIP)为目标污染物,研究光照时间、pH及Cu(Ⅱ)共存对BiVO4光催化降解抗生素性能的影响.结果表明:BiVO4对TC和CIP的光催化具有较为宽泛的pH适用范围,其中TC在pH为5~12之间具有良好的效果,pH=8时,降解效率达到74%;CIP在pH为4~9之间适用范围最好,降解率由26%升高到37%.此外,对TC和CIP光催化降解机理和可能的降解途径进行探讨,光催化降解主要机理是有效光生电子-空穴与OH-和O2结合,将TC和CIP分解为中间产物CO2和H2O.总之,单斜白钨矿型BiVO4用于模拟抗生素废水的研究,取得一定效果,可为实际抗生素废水的处理提供参考.  相似文献   

10.
Photocatalysis has been recognized as a feasible method in water and wastewater treatment. Compared to other methods such as adsorption and chemical oxidation, the use of photocatalyst in the advanced oxidation processes gives benefits such as a longer lifetime of the catalyst and less consumable chemicals. Currently, explorations into low-cost, effective photocatalysts for organic contaminated water are being developed. Within this scheme, an easily separated photocatalyst with other functionality, such as high adsorption, is important. In this research, preparation of a magnetic nanocomposite photocatalyst based on agricultural waste, palm leaves biochar impregnated nickel nanoparticles (Ni/BC), was investigated. The nanocomposite was prepared by direct pyrolysis of palm leaves impregnated with nickel (II) chloride precursor. Furthermore, the physicochemical characterization of the material was performed by using an X-ray diffractometer (XRD), scanning electron microscopy-energy dispersive X-ray fluorescence (SEM-EDX), transmission electron microscopy (TEM), gas sorption analysis, X-ray photoelectron spectroscopy (XPS) and vibrating sample magnetometer (VSM). The photocatalytic activity of Ni/BC was evaluated for methyl violet (MV) photocatalytic oxidation. The results from XRD, XPS and TEM analyses identified single nickel nanoparticles dispersed on the biochar structure ranging from 30–50 nm in size. The dispersed nickel nanoparticles increased the BET specific surface area of biochar from 3.92 m2/g to 74.12 m2/g oxidation. High photocatalytic activity of the Ni/BC was exhibited by complete MV removal in 30 min for the concentration ranging from 10–80 mg/L. In addition, the Ni/BC showed stability in the pH range of 4–10 and reusability without any activity change until fifth usage. The separable photocatalyst is related to magnetism of about 13.7 emu/g. The results highlighted the role of biochar as effective support for Ni as photoactive material.  相似文献   

11.
以六水合硝酸锌和六水合硝酸铈?髥为原料,通过共沉淀法制备了一系列稀土Ce掺杂的纳米ZnO,并采用X射线粉末衍射(XRD)、傅里叶红外光谱(IR)、扫描电镜(SEM)、X射线能谱分析(EDS)、紫外可见漫反射光谱对其进行了全面表征。部分样品还通过X射线光电子能谱(XPS)和光致荧光光谱(PL)进行了进一步分析。分别在日光和紫外光条件下,对这一系列Ce掺杂的ZnO进行了光催化降解亚甲基蓝的性能研究,得出当Ce的掺杂量为3%(n/n)时(ZnO-3%Ce),其光催化活性最佳,光催化降解亚甲基蓝的效率均超过98%。选取ZnO-3%Ce作为催化剂,分别进一步考察其在日光和紫外光下对罗丹明B和甲基橙的光催化降解性能。研究结果表明,ZnO-3%Ce在日光和紫外光下均表现出较好的光催化降解效果,体现出良好的光降解普适性。日光下光降解效率顺序为:亚甲基蓝>罗丹明B>甲基橙,而紫外光下降解效率顺序为:罗丹明B>亚甲基蓝>甲基橙。最后,我们研究了催化剂ZnO-3%Ce的循环利用及稳定性性能。实验结果表明:该催化剂循环使用3次之后,光催化效率仍然稳定在97%以上,并且其结构和组成保持不变,体现出优异的稳定性和应用前景。  相似文献   

12.
The phthalocyanine dyes, Remazol Turquoise Blue G133, Everzol Turquoise Blue and Heligon Blue S4 are found to be biosorbed by Phanerochaete chrysosporium (white-rot fungi) and also metabolised by its ligninolytic extracellular enzymes resulting in dye decolourisation, formation of free copper ions and organic metabolites with ultimate extensive phthalocyanine ring breakdown. It is believed that the ligninolytic extracellular enzyme laccase is involved in the early production of a metabolite M8 which involves break-up of the conjugated phthalocyanine ring structure but which retains multi-negative charge. Another ligninolytic extracellular enzyme, manganese peroxidase, is believed to be involved in the release of Cu2+ from the phthalocyanine structure to give a non-copper-containing phthalocyanine metabolite M1 with a slightly longer migration time than the parent dye and absorption at 666 nm. The phthalocyanine ring structure is also broken up by metabolic processes that involve desulphonation and oxidation to give phthalimide (M3) and an unidentified electroactive metabolite M2. Other minor, unidentified metabolites are observed using capillary electrophoresis and liquid chromatography.  相似文献   

13.
用自制的纳米ZnO在室外阴天、太阳光照射、室内紫外灯照射等条件下对不同有机染料的降解性能作了系统的研究。结果表明纳米ZnO在太阳光照射条件下对弱碱性有机染料溶液的降解效果较好。本文还比较了自制纳米ZnO与纳米TiO2对有机染料的降解性能,结果表明ZnO的降解效果优于TiO2。  相似文献   

14.
《中国化学快报》2021,32(10):2975-2984
Metal-organic frameworks (MOFs) are currently popular porous materials with research and application value in various fields. Aiming at the application of MOFs in photocatalysis, this paper mainly reviews the main synthesis methods of MOFs and the latest research progress of MOFs-based photocatalysts to degrade organic pollutants in water, such as organic dyes, pharmaceuticals and personal care products, and other organic pollutants. The main characteristics of different synthesis methods of MOFs, the main design strategies of MOFs-based photocatalysts, and the excellent performance of photocatalytic degradation of organic pollutants are summarized. At the end of this paper, the practical application of MOFs, the current limitations of MOFs, the synthesis methods of MOFs, and the future development trend of MOFs photocatalysts are explained.  相似文献   

15.
《印度化学会志》2021,98(4):100019
Nanotechnology is a promising field and has diverse applications. Primarily, nanoparticles have been synthesized via chemical and physical methods. Dyes are synthetic organic compounds that are abundantly used in industries especially in textile industry. The use of these dyes is major contributors towards environmental pollution. Their hazardous nature raises great concerns in general public. Advancement in nanotechnology can efficiently help in mitigating this problem as nanoparticles can efficiently convert these harmful dyes into less harmful chemical byproducts through a process called Photocatalysis. Although, different approaches have been used for the synthesis of nanoparticles and their Photocatalytic activity but the most efficient approach is the green synthesis using different plants. This approach is environment-friendly and cost-effective. In order to reduce the toxic effects of synthetic dyes that pollutes the environment, it is important to look for such environmental friendly approaches and highlight the role of green nanotechnology in photocatalysis. In the present review paper, we for the first time have summarized the application of biogenic nanoparticles used as Photocatalytic agent in the degradation of different dyes such MB, MO and MR. We have presented a comprehensive review of chemistry/engineering approach of the technology along with mechanistic aspects. Furthermore, key applications of nanotechnology in Photocatalysis have been discussed along with futuristic insight.  相似文献   

16.
The magnetically recyclable graphene oxide-Fe3O4/polyallylamine (PAA)/Ag nanocatalyst was prepared via a green route using Eucalyptus comadulensis leaves extract as both reducing and stabilizing agent. The catalytic activity of this nanocatalyst was investigated for the reduction reaction of methylene blue and methyl orange in the presence of NaBH4 in aqueous medium at room temperature. The prepared nanocatalyst was characterized by different methods such as Fourier transformed infrared spectroscopy, X-ray diffraction, scanning electron microscopy–energy dispersive X–ray spectroscopy, thermogravimetric analysis, vibrating sample magnetometer, transmission electron microscopy, and UV–visible spectroscopy. The results show that graphene oxide/PAA/Ag nanocatalyst has good activity and recyclability, and can be reused several times without major loss of activity in the reduction process. The apparent rate constants of the methyl orange (MO) and methylene blue (MB) were calculated to be 0.077 s−1 (3 mg of catalyst) and 0.15 s−1 (2 mg of catalyst), respectively.  相似文献   

17.
The degradation of several organic compounds in aqueous solution: methyl yellow (C14H15N3), methyl red (C15H15N3O2), methyl orange (C14H14N3NaO3S), phenol red (C19H14O5S) and methylene blue (C16H18ClN3S), was investigated in a pulsed corona discharge. High voltage pulses of 17 kV amplitude, 24 ns rise time and approximately 200 ns duration (full width at half maximum––FWHM) were applied to an array of six hollow needles. When oxygen was bubbled into the solution through the needle, current pulses of 90 A amplitude were obtained and the average power dissipated in the discharge was 19 W at 100 Hz pulse repetition rate. UV-visible spectra of the aqueous solutions show a significant reduction of the absorbance in the visible range, up to 90%, after plasma treatment, suggesting fragmentation of the compounds. Several aliphatic compounds were identified as oxidation products of methyl yellow, methyl red and methyl orange. For methylene blue and phenol red aromatic reaction products were detected as well.  相似文献   

18.
Au nanoparticles (Au NPs) play a vital role in heterogeneous catalytic reactions. However, pristine Au NPs usually suffer from poor selectivity and difficult recyclability. In this work, Fe3O4‐Au@CeO2 hybrid nanofibers were prepared via a simple one‐pot redox reaction between HAuCl4 and Ce (NO3)3 in the presence of Fe3O4 nanofibers. CeO2 shell was uniformly coated on the surface of Fe3O4 nanofibers to form a unique core‐shell structure, while Au NPs were encapsulated inside the CeO2 shell. The as‐prepared Fe3O4‐Au@CeO2 hybrid nanofibers have been proved to be positively surface charged due to the formation of CeO2 shell, enabling them to be good candidates for predominant selective catalytic activity towards the degradation of negatively charged organic dyes. In addition, the Fe3O4‐Au@CeO2 hybrid nanofibers showed magnetic properties, offering them excellent recyclable usability. This work presents a facile and effective solution to prepare magnetic noble metal/metal oxide hybrid nanomaterials with unique chemical structure and surface characteristic for promising applications in heterogeneous catalysis.  相似文献   

19.
均一形貌的ZnO纳米棒的制备及其光催化性能研究   总被引:20,自引:0,他引:20  
ZnO nanorods were synthesized from high purity Zn granule by a vapor phase deposition in the Ar + O2 gas. The products were characterized by X-ray diffraction (XRD) and scanning electron microscope (SEM). The ZnO nanorods were typically 1~2 μm in length and 20~30 nm in diameter with an aspect ratio as high as 20. The UV absorption properties were detected and the results show that the ZnO nanorods have an extremely strong absorption at 200~380 nm wavelength. The results were good when the ZnO nanorods were used as photocatalyst.  相似文献   

20.
The possibility of decreasing the size of colloidal nanoparticles of CdS in the oxidative photocorrosion reaction in the presence of methylviologen and of increasing their size during photocatalytic reduction of sulfur in ethanol in the presence of cadmium acetate. A dependence of the quantum yield of the latter reaction on the initial size of CdS nanoparticles was observed, which was interpreted as a result of quantum size effects. __________ Translated from Teoreticheskaya i éksperimental’naya Khimiya, Vol. 43, No. 3, pp. 170–175, May–June, 2007.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号