首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
A sensitive, selective and accurate ultra performance liquid chromatographic method has been developed and validated for the simultaneous determination of bisoprolol fumarate and hydrochlorothiazide in their combined dosage forms and as well as in spiked human urine samples. The separation was achieved on an Acquity UPLC BEH C18 1.7 μm (2.1 × 50 mm) column, at 40 °C with mobile phase consisting of acetonitrile:phosphate buffer (20 mM) at pH 3.0 with a gradient elution at 225 nm. Bisoprolol fumarate and hydrochlorothiazide were well separated in <1.5 min with good resolution and without any tailing and interference of excipients. The method was fully validated according to ICH guidelines in terms of accuracy, precision, linearity and specificity. A linear response was observed over the concentration range 0.5–150 μg mL?1 for hydrochlorothiazide and 0.5–250 μg mL?1 for bisoprolol fumarate. Limit of detection and limit of quantitation for hydrochlorothiazide were calculated as 0.01 and 0.03 μg mL?1, respectively, and for bisoprolol fumarate were 0.07 and 0.21 μg mL?1, respectively. Moreover, bisoprolol fumarate and hydrochlorothiazide were subjected to degradation conditions such as hydrolytic, oxidative and thermal stress conditions to evaluate the ability of the proposed method for the separation of bisoprolol fumarate and hydrochlorothiazide from their degradation compounds.  相似文献   

2.
A simple, rapid and sensitive column liquid chromatographic method was developed and validated to measure simultaneously the amount of ascorbic acid and phenolic acids at single wavelength (240 nm) in order to assess drug release profiles and drug-excipients compatibility studies for a new sustained release tablet formulation and its subsequent stability studies. A combined isocratic and linear gradient reversed-phase LC method was carried out at 240 nm. Quantification was achieved with reference to the external standards. The linearity for concentrations between 0.042 and 0.150 mg mL?1 for ascorbic acid, 0.084–0.250 mg mL?1 for chlorogenic acid, 0.053–0.360 mg mL?1 for caffeic acid, and 0.016–0.250 mg mL?1 for ferulic acid (r > 0.99 for all analytes) were established. The recovery of the active ingredients from the samples was at the range of 92.3–102.9%. Intra- and inter-day precisions were less than 2.5%. The limits of detection and quantification were 8 and 24 μg mL?1 for ascorbic acid, 18 and 54 μg mL?1 for chlorogenic acid, 37 and 112 μg mL?1 for caffeic acid, and 11 and 34 μg mL?1 for ferulic acid. The determination of the four active ingredients was not interfered by the excipients of the products. Samples were stable in the release mediums (37 °C) at least for 12 h.  相似文献   

3.
A sensitive, simple, and accurate method for determination and pharmacokinetic study of ferulic acid and isoferulic acid in rat plasma was developed using a reversed-phase column liquid chromatographic (RP-LC) method with UV detection. Sample preparations were carried out by protein precipitation with the addition of methanol, followed by evaporation to dryness. The resultant residue was then reconstituted in mobile phase and injected into a Kromasil C18 column (250 × 4.6 mm i.d. with 5 μm particle size). The mobile phase was methanol-1% formic acid (33:67, v/v). The calibration plots were linear over the range 5.780–5780 ng·mL?1 for ferulic acid and 1.740–348.0 ng·mL?1 for isoferulic acid. Mean recoveries were 85.1% and 91.1%, respectively. The relative standard deviations (RSDs) of within-day and between-day precision were not above 15% for both of the analytes. The limits of quantification were 5.780 ng·mL?1 for ferulic acid and 1.740 ng·mL?1 for isoferulic acid. This RP-LC method was used successfully in pharmacokinetic studies of ferulic acid and isoferulic acid in rat plasma after intravenous injection of Guanxinning Lyophilizer.  相似文献   

4.
A rapid and precise LC method was developed for the simultaneous determination of aliskiren hemifumarate (ALS), amlodipine besylate (AML) and hydrochlorothiazide (HCZ) using acetonitrile:25 mM octane sulfonic acid sodium salt monohydrate in water (60:40 v/v) as the mobile phase. The flow rate was maintained at 1.2 mL min?1 on a stationary phase composed of Supelco, Discovery® HS (C18) column (25 cm × 4.6 mm, 5 μm). Isocratic elution was applied throughout the analysis. Detection was carried out at λ max (232 nm) at ambient temperature. The method was validated according to ICH guidelines. Linearity, accuracy and precision were satisfactory over the concentration ranges of 32–320, 2–44 and 4–64 μg mL?1 for ALS, AML and HCZ, respectively. LOD and LOQ were estimated and found to be 0.855 and 2.951 μg mL?1, respectively, for ALS, 0.061 and 0.202 μg mL?1, respectively, for AML as well as 0.052 and 0.174 μg mL?1, respectively, for HCZ. The method was successfully applied for the determination of the three drugs in their co-formulated tablets. The results were compared statistically with reference methods and no significant difference was found. The developed method is specific and accurate for the quality control and routine analysis of the cited drugs in pharmaceutical preparations.  相似文献   

5.
A sensitive, rapid and reproducible LC–MS/MS method for the determination of olmesartan (OLM), amlodipine (ALM) and hydrochlorothiazide (HCZ) in rat plasma and urine has been developed and validated. Irbesartan (IRB) was used as an internal standard. The analytes were separated on a Waters XTerra-C18 column using gradient elution with acetonitrile and 10 mM ammonium acetate buffer (pH 3.5, adjusted with acetic acid) at a flow rate of 1.0 mL min?1. The three analytes were ionized by positive ion electrospray using multiple-reaction monitoring (MRM) mode to monitor precursor?→?product ion transitions m/z 447.31?→?234.97 for OLM, 408.87?→?238.18 for AML and 290.1?→?204.85 for HCZ. The specificity, matrix effect, recovery, sensitivity, linearity, accuracy, precision, and stabilities were all validated over the concentration range 0.4–100 ng mL?1 for AML, 0.2–100 ng mL?1 for OLM, 0.1–100 ng mL?1 for HCZ. The mean concentrations (Cmax) are 10.32, 587, and 3.4 for OLM, ALM, and HCZ, respectively, by the oral administration of 15 mg kg?1 of each analyte.  相似文献   

6.
A selective, sensitive, and accurate method has been developed and validated for the quantification of tangeretin in rat plasma. The application of LC-electrospray-ion trap mass spectrometry in full scan and multiple reactions monitoring modes were investigated. Following solid phase extraction using a hydrophilic–lipophilic balance cartridge, the analytes were separated on a C18 column using an isocratic mobile phase composed of acetonitrile/water (50:50, v/v) containing 0.3% formic acid. In full scan mode, the LOQ was 2 ng mL?1. The standard calibration curve was linear (R 2 = 0.9999) over the concentration range 2–200 ng mL?1. The precision over the concentration range was within 15% (RSD) and the accuracy was ranged from 86 to 115%. In multiple reaction monitoring mode, the LOQ was 1 ng mL?1 and the standard calibration curve was linear (R 2 = 0.9976) over the concentration range 1–100 ng mL?1 with a precision of 12% and accuracy rangeing from 91 to 113%.  相似文献   

7.
A sensitive and high selective chemiluminescence (CL) method was developed for the determination of lincomycin in acid medium using diperiodatonickelate as a reagent. The mechanism leading to luminescence is discussed by comparing the spectra of fluorescence and CL. Relative CL intensity is linear in the range from 8.0 ng mL?1 to 1.0 µg mL?1, the limit of detection is 2.5 ng mL?1 (3σ), and the relative standard deviation is 4.0% at 0.1 µg mL?1 of lincomycin (n?=?7). The method was successfully applied to the determination of lincomycin in injections, human urine, and in serum samples.  相似文献   

8.
《Analytical letters》2012,45(5):947-956
Abstract

A new electrochemical substrate for horseradish peroxidase, methyl red, is reported. In this reaction system, horseradish peroxidase can catalyze the redox reaction of methyl red and H2O2. Methyl red exhibits a sensitive voltammetric peak at?0.51 V vs. Ag/AgCl reference electrode, the decrease of the peak current of methyl red is in proportion to the concentration of horseradish peroxidase (HRP). The linear range for determination of horseradish peroxidase is 5.0×10?8~5.0×10?7 g mL?1 and the detection limit is 1.8×10?8 g mL?1. The relative standard deviation is 3.3% when 2.0×10?7 g mL?1 HRP was sequentially determined 11 times. A voltammetric enzyme‐linked immunoassay method for the determination of estriol was developed, based on this electrochemical system. The linear range for determination of estriol is 1.0~1000.0 ng mL?1, and the detection limit is 0.33 ng mL?1. The relative standard deviation for 11 parallel determinations with 200 ng mL?1 estriol is 4.8%. Some pregnancy serum samples were analyzed with satisfactory results.  相似文献   

9.
A liquid chromatography–electrospray ionization tandem mass spectrometry method has been developed to perform the determination of 5-hydroxytryptamine (5-HT), norepinephrine (NE), dopamine (DA) and their metabolites, i.e., 5-hydroxyindole-3-acetic acid (5-HIAA), 4-hydroxy-3-methoxyphenylglycol (MHPG) sulfate, 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) in rat brain tissue. Analytes were separated on a Thermo C18 column (4.6 mm × 250 mm, 5 μm, SN: 1245575T, Thermo electron corporation, USA) with a mobile phase of 0.05% formic acid/acetonitrile (92:8 for ESI+, 82:18 for ESI?, v/v) at the flow-rate of 0.8 mL min?1. The LC system was coupled to a Waters Micromass Quattro Premier XE tandem quadruple mass spectrometer. MS acquisition of 5-HT, NE and DA was performed in positive electrospray ionization multiple reaction monitoring (MRM) mode, while negative electrospray ionization MRM mode was used to monitor their metabolites. The calibration curves were linear within the concentration range of 4–4,450 ng mL?1 for 5-HT, 4–4,110 ng mL?1 for NE and 4–4,100 ng mL?1 for DA (≥ 0.999). The limit of quantitation was 4 ng mL?1. 5-HIAA, MHPG, DOPAC and HVA have good linearity within the range of 12–1,000 ng mL?1(≥ 0.998) and the limit of quantitation was 12 ng mL?1. The intra- and inter-day RSD were lower than 8.45%. The method is sensitive, fast, accurate and usable for quantity determination of monoamine neurotransmitters and their metabolites in neuropsychiatric diseases.  相似文献   

10.
A simple, sensitive, precise and accurate reversed phase liquid chromatographic method has been developed for the simultaneous estimation of atorvastatin (AT) calcium, ramipril (RA) and aspirin (AS) from capsule dosage form. The method was developed using a Phenomenex Luna C18 (250 mm, 4.6 mm i.d., 5 µm) column with a mobile phase consisting of 0.1%, orthophosphoric acid buffer:acetonitrile:methanol (45:50:5 v/v/v), pH 3.3, at a flow rate of 1 mL min?1. Detection was carried out with ultra-violet detection at 210 nm. The retention times were about 12.19, 2.35, and 3.95 min for AT calcium, RA and AS, respectively. The developed method was validated for linearity, accuracy, precision, limit of detection, limit of quantitation and robustness. The linearity ranges were 1–6 µg mL?1 for AT calcium, 0.5–3 µg mL?1 for RA and 7.5–45 µg mL?1 for AS with mean recoveries of 100.59 ± 0.68, 100.62 ± 0.83 and 100.49 ± 0.73% for AT calcium, RA and AS, respectively. Limit of detection obtained were 29.85 ng mL?1 for AT calcium, 4.71 ng mL?1 for RA and 85.13 ng mL?1 for AS. Impurity of salicylic acid was found in capsule dosage form at the retention time of about 4.84 min. The proposed method can be used for the estimation of these drugs in combined dosage forms.  相似文献   

11.
A rapid and specific high-performance liquid chromatographic method coupled with electrospray ionization mass spectrometric detection has been developed and validated for identification and quantification of wogonin and oroxylin A in rat plasma. Wogonin, oroxylin A, and diazepam (internal standard) were extracted from plasma samples by liquid–liquid extraction with ethyl acetate. Chromatographic separation was achieved on a C18 column with acetonitrile–0.6% aqueous formic acid 35:65 (v/v) as mobile phase at a flow rate of 0.2 mL min?1. Detection was performed with a single-quadrupole mass spectrometer in selected-ion-monitoring (SIM) mode. Linearity was good within the concentration range 14.4–360 ng mL?1 for wogonin and 10.8–271 ng mL?1 for oroxylin A; the correlation coefficients (r 2) were 0.9999. The intra-day and inter-day precision, as RSD, was below 12.4%, and accuracy ranged from 81.1 to 111.9%. The lower limit of quantification was 14.4 ng mL?1 for wogonin and 10.8 ng mL?1 for oroxylin A. This method was successfully used in the first pharmacokinetic study of wogonin and oroxylin A in rat plasma after oral administration of the active fraction from Xiao-xu-ming decoction.  相似文献   

12.
A simple, sensitive and accurate method for the simultaneous separation and determination of apigenin and four phenolic acids including chlorogenic acid, caffeic acid, p-coumaric acid and ferulic acid in four dried flowers by high performance liquid chromatography with electrochemical detection (ECD) and diode array detection (DAD) has been established. The detection limits of caffeic acid, p-coumaric acid and ferulic acid obtained with ECD were 3, 1 and 4 ng mL?1, and LOD of apigenin and chlorogenic acid obtained with DAD were 1 × 10?2 and 6 × 10?2 μg mL?1. The detection and quantification limits of three phenolic compounds obtained with ECD were two to ninefold greater than those obtained with DAD. As electrochemically inactive compounds, apigenin and chlorogenic acid were detected by DAD. All calibration curves showed good linearity (r ≥ 0.9992) within the test ranges. The recoveries ranged from 95.3 to 101.4% (RSD ≤ 2.9%). This approach could provide scientific evidence for comprehensive evaluation about the effect of the medicine and ensure nutrient status of dried flowers.  相似文献   

13.
A novel, rapid and specific ultra performance liquid chromatography-photo diode array detection method was developed for the simultaneous determination of 2,3,5,4′-tetrahydroxystilbene-2-O-β-d-glucoside (TSG), emodin-8-O-β-d-glucoside (EMG), emodin (EM) and physcion (PS). The chromatographic separation was performed on an Acquity BEH C18 column (100 × 2.1 mm i.d., 1.7 μm). The mobile phase was a mixture of 0.3% acetic acid–water and 0.3% acetic acid–acetonitrile employing gradient elution at the flow rate of 0.4 mL min?1. The four compounds behaved linearly in the concentration range between 60.80–3040.00 μg mL?1 (TSG), 0.50–25.00 μg mL?1 (EMG), 2.16–108.00 μg mL?1 (EM) and 1.56–78.00 μg mL?1 (PS), respectively with correlation coefficients >0.999. The precision of the method were below 5% RSD. Recoveries of the four compounds ranged from 95.71 to 102.97%, with RSD values less than 2%.  相似文献   

14.
Guanidino compounds guanidine, methylguanidine, guanidinoacetic acid, guanidinobutyric acid, guanidinopropionic acid, and guanidinosuccinic acid after derivatization with hexafluoroacetylacetone and ethyl chloroformate at pH 9 in aqueous phase, eluted, and separated from gas chromatographic column HP-5 (30 m × 0.32 mm id) with film thickness of 0.25 μm at an initial column temperature 90 °C for 2 min, followed by heating rate of 10 °C min?1 up to 220 °C with nitrogen flow rate of 1 mL min?1. The detection was by flame ionization detector. The linear calibration ranges of each of guanidino compounds were obtained within 1–10 μg mL?1, and the limit of detection was within 0.014–0.19 μg mL?1. The derivatization and gas chromatography elution and separation were repeatable in terms of retention time and peak height/peak area with relative standard deviation (RSD) (n = 4) within 1.7–2.9 % and 1.4–2.8 %, respectively. The method was applied for the determination of guanidino compounds from deproteinized serum of uremic patients and healthy volunteers, and was found in the range below the limit of quantitation (BLOQ) to 1.25 μg mL?1 with RSD within 1.4–3.6 %, and BLOQ to 0.4 μg mL?1 with RSD 1.3–3.4 %, respectively. A number of pharmaceutical additives did not effect the determination with RSD within ±3.1 %.  相似文献   

15.
A highly sensitive liquid chromatographic-atmospheric pressure chemical ionization-tandem mass spectrometric method is developed to quantitate phenacetin and its metabolite paracetamol in rabbit plasma. The analytes and internal standard oxazepam are extracted from plasma by liquid–liquid extraction using ethyl acetate, and separated on a Zorbax SB-C18 column (2.1 mm × 150 mm, 5 μm) using acetonitrile–0.1% formic acid in water (40:60 v/v) at a flow of 0.4 mL min?1. Detection is carried out by multiple reaction monitoring on a ion-trap LC-MS-MS system with an atmospheric pressure chemical ionization interface. The assay is linear over the range 4–1,600 ng mL?1 for phenacetin and 3–2,000 ng mL?1 for paracetamol, with a lower limit of quantitation of 4 ng mL?1 for phenacetin and 3 ng mL?1 for paracetamol. Intra- and inter-day precision are less than 7.1% and the accuracy are in the range 97.3–103.5%. The validated method is successfully used to analyze the drug in samples of rabbit plasma for pharmacokinetic study.  相似文献   

16.
A high performance liquid chromatography method is presented for the determination of valproic acid levels in human plasma. The method was based on pre-column derivatization using N-(1-naphthyl)ethylenediamine as a new labeling agent. The calibration curve was linear in the investigated concentration range between 0.1 and 100 μg mL?1 and showed good accuracy and reproducibility. The assay provided a limit of quantification of 0.1 μg mL?1 for valproic acid and a limit of detection of 10 ng mL?1, respectively. The presented method was successfully applied to the determination of valproic acid levels in plasma after oral administration of 600 or 800 mg of sodium valproate.  相似文献   

17.
A method was developed to determine vinpocetine and its metabolite, apovincaminic acid, in beagle plasma by LC-MS-MS. After protein precipitation with methanol, the supernatant of the sample was concentrated and injected into an Agilent Zorbax XDB-C18 column. The sample was separated by a mobile phase consisting of acetonitrile and 0.2% formic acid solution, and the reading was determined on an Agilent 6410 Triple Quad Tandem mass spectrometer in multiple reaction monitoring mode with the following transitions: m/z 351.5 ?? 280.2/266.3 for vinpocetine, 323.2 ?? 236.1/280.2 for apovincaminic acid, and 411.2 ?? 191.1 for the internal standard. The intra- and inter-day variances were less than 15% (RSD%), and average recoveries were higher than 80%. The linearity ranges (LR) between 0.1 and 20.0 ng mL?1 for vinpocetine (r 2 = 0.9980) and between 1.0 and 200.0 ng mL?1 for apovincaminic acid (r 2 = 0.9995) were established. In summary, this method is sensitive, specific, and appropriate for in vivo study of various dosage forms of vinpocetine.  相似文献   

18.
A simple, rapid and sensitive liquid chromatography/electrospray tandem mass spectrometry quantitative detection method, using amantadine as internal standard, was developed for the simultaneous analysis of paracetamol, pseudoephedrine and chlorpheniramine concentrations. Analytes were extracted from plasma samples by liquid–liquid extraction with n-hexane–dichloromethane–2-propanol (2:1:0.1, v/v), separated on a C18 reversed-phase column with 0.1% formic acid–methanol (40:60, v/v) and detected by electrospray ionization mass spectrometry in positive multiple reaction monitoring mode. Calibration curves for plasma were linear over the concentration range 10–10,000 ng mL?1 of paracetamol, 2–2,000 ng mL?1 of pseudoephedrine and 0.2–200 ng mL?1 of chlorpheniramine. The method has a lower limit of quantitation of 10 ng mL?1 for paracetamol, 2.0 ng mL?1 for pseudoephedrine and 0.2 ng mL?1 for chlorpheniramine. Recoveries, precision and accuracy results indicate that the method was reliable within the analytical range, and the use of the internal standard was very effective for reproducibility by LC-MS-MS. This method is feasible for the evaluation of pharmacokinetic profiles of a novel multicomponent sustained release formulation containing 325 mg of paracetamol, 30 mg of pseudoephedrine hydrochloride and 2 mg of chlorpheniramine maleate. It is the first time the pharmacokinetic evaluation of a novel sustained-action formulation containing paracetamol, pseudoephedrine and chlorpheniramine has been elucidated in vivo using LC-MS-MS.  相似文献   

19.
A rapid, selective and convenient liquid chromatography–mass spectrometric method for the simultaneous determination of paracetamol and caffeine in human plasma was developed and validated. Analytes and theophylline [internal standard (I.S.)] were extracted from plasma samples with diethyl ether-dichloromethane (3:2, v/v) and separated on a C18 column (150 × 4.6 mm ID, 5 μm particle size, 100 Å pore size). The mobile phase consisted of 0.2% formic acid–methanol (60:40, v/v). The assay was linear in the concentration range between 0.05 and 25 μg mL?1 for paracetamol and 10–5,000 ng mL?1 for caffeine, with the lower limit of quantification of 0.05 μg mL?1 and 10 ng mL?1, respectively. The intra- and inter-day precision for both drugs was less than 8.1%, and the accuracy was within ±6.5%. The single chromatographic analysis of plasma samples was achieved within 4.5 min. This validated method was successfully applied to study the pharmacokinetics of paracetamol and caffeine in human plasma.  相似文献   

20.
A fast and efficient method has been demonstrated for the trace determination of six important metabolites of synthetic pyrethroids including cis- and trans-3-(2,2-dichlorovinyl)-2,2-dimethylcyclopropane-1-carboxylic acid (cis- and trans-Cl2CA), cis-3-(2,2-dibromovinyl)-2,2-dimethylcyclopropane-1-carboxylic acid (cis-Br2CA), 4-fluoro-3-phenoxybenzoic acid (4-F-3-PBA), 3-phenoxybenzoic acid (3-PBA), and 2-phenoxybenzoic acid (2-PBA) in environmental water samples using hollow fiber (HF)-mediated liquid-phase microextraction (LPME) coupled with in-syringe derivatization (ISD) followed by gas chromatography (GC) with electron capture detector (ECD) analysis. This method utilizes a HF membrane segment impregnated with extraction solvent as the LPME sampling probe, which was connected to a microsyringe pre-filled with derivatizing agents, and it was immersed into sample solution for extraction. After extraction, the extracting solution was subjected to derivatization reaction that was performed inside the syringe barrel followed by GC-ECD analysis. Under optimal conditions, the best extraction efficiency was obtained using sampling probe (2.0 cm hollow fiber) impregnated with 1-octanol immersed into water sample (5.0 mL, adjusted pH below 1.0) and stirring (1,250 rpm) for 10 min at 70 °C and diisopropylcarbodiimide (2 μL) and 1,1,1,3,3,3-hexafluoro-2-propanol (1 μL) were the derivatizing agents used. The detection limits of 3 ng mL?1 for cis- and trans-Cl2CA, 2 ng mL?1 for cis-Br2CA, 6 ng mL?1 for 4-F-3-PBA, and 0.6 ng mL?1 for 3-PBA and 2-PBA. The method showed good linearity (R 2 = 0.973?0.998), repeatability from 4.0 to 13 % (n = 5), recovery from 79.2 to 95.7 %, and enrichment factors ranged between 109 and 159 for target analytes spiked in water samples. The proposed method and conventional methods were compared. Results suggested that the proposed HF-LPME-ISD/GC-ECD method was a rapid, simple, inexpensive, and eco-friendly technique for the analysis of metabolites of pyrethroids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号