首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Zymomonas mobilis has been metabolically engineered to broaden its substrate utilization range to include d-xylose and l-arabinose. Both genomically integrated and plasmid-bearing Z. mobilis strains that are capable of fermenting the pentose d-xylose have been created by incorporating four genes: two genes encoding xylose utilization metabolic enzymes (xylA/xylB) and two genes encoding pentose phosphate pathway enzymes (talB/tktA). We have characterized the activities of the four newly introduced enzymes for xylose metabolism, along with those of three native glycolytic enzymes, in two different xylose-fermenting Z. mobilis strains. These strains were grown on glucose-xylose mixtures in computer-controlled fermentors. Samples were collected and analyzed to determine extracellular metabolite concentrations as well as the activities of several intracellular enzymes in the xylose and glucose uptake and catabolism pathways. These measurements provide new insights on the possible bottlenecks in the engineered metabolic pathways and suggest methods for further improving the efficiency of xylose fermentation.  相似文献   

2.
Bacillus circulans D1 is a good producer of extracellular thermostable xylanase. Xylanase production in different carbon sources was evaluated and the enzyme synthesis was induced by various carbon sources. It was found that d-maltose is the best inducer of the enzyme synthesis (7.05 U/mg dry biomass at 48 h), while d-glucose and d-arabinose lead to the production of basal levels of xylanase. The crude enzyme solution is free of cellulases, even when the microorganism was cultivated in a medium with d-cellobiose. When oat spelt xylan was supplemented with d-glucose, the repressive effect of this sugar on xylanase production was observed at 24 h, only when used at 5.0 g/L, leading to a reduction of 60% on the enzyme production. On the other hand, when the xylan medium was supplemented with d-xylose (3.0 or 5.0 g/L), this effect was more evident (80 and 90% of reduction on the enzyme production, respectively). Unlike that observed in the xylan medium, glucose repressed xylanase production in the maltose medium, leading to a reduction of 55% on the enzyme production at 24 h of cultivation. Xylose, at 1.0 g/L, induced xylanase production on the maltose medium. On this medium, the repressive effect of xylose, at 3.0 or 5.0 g/L, was less expressive when compared to its effect on the xylan medium.  相似文献   

3.
For optimum fermentation, fermenting xylose into acetic acid by Clostridium thermoaceticum (ATCC 49707) requires adaptation of the strain to xylose medium. Exposed to a mixture of glucose and xylose, it preferentially consumesxylose over glucose. The initial concentration of xylose in the medium affects the final concentration and the yield of acetic acid. Batch fermentation of 20 g/L of xylose with 5g/L of yeast extract as the nitrogen source results in a maximum acetate concentration of 15.2 g/L and yield of 0.76 g of acid/g of xylose. Corn steep liquor (CLS) is a good substitute for yeast extract and results in similar fermentation profiles. The organism consumes fructose, xylose, and glucose from a mixture of sugars in batch fermentation. Arabinose, mannose, and galactose are consumed only slightly. This organism loses viability on fed-batch operation, even with supplementation of all the required nutrients. In fed-batch fermentation with CSL supplementation, d-xylulose (an intermediate in the xylose metabolic pathway) accumulates in large quantities.  相似文献   

4.
Pichia stipitis CBS 6054 will grow on d-xylose, d-arabinose, and l-arabinose. d-Xylose and l-arabinose are abundant in seed hulls of maize, and their utilization is important in processing grain residues. To elucidate the degradation pathway for l-arabinose, we obtained a mutant, FPL-MY30, that was unable to grow on d-xylose and l-arabinose but that could grow on d-arabinitol. Activity assays of oxidoreductase and pentulokinase enzymes involved in d-xylose, d-arabinose, and l-arabinose pathways indicated that FPL-MY30 is deficient in d-xylitol dehydrogenase (D-XDH), d- and l-arabinitol dehydrogenases, and d-ribitol dehydrogenase. Transforming FPL-MY30 with a gene for xylitol dehydrogenase (PsXYL2), which was cloned from CBS 6054 (Gen Bank AF127801), restored the D-XDH activity and the capacity for FPL-MY30 to grow on l-arabinose. This suggested that FPL-MY30 is critically deficient in XYL2 and that the d-xylose and l-arabinose metabolic pathways have xylitolas a common intermediate. The capacity for FPL-MY30 to grow on d-arabinitol could proceed through d-ribulose.  相似文献   

5.
Xylose mother liquor (XML) is a by-product of xylose production through acid hydrolysis from corncobs, which can be used potentially for alternative fermentation feedstock. Sixteen Clostridia including 13 wild-type, 1 industrial strain, and 2 genetically engineered strains were screened in XML, among which the industrial strain Clostridium acetobutylicum EA 2018 showed the highest titer of solvents (12.7 g/L) among non-genetic populations, whereas only 40 % of the xylose was consumed. An engineered strain (2018glcG-TBA) obtained by combination of glcG disruption and expression of the d-xylose proton-symporter, d-xylose isomerase, and xylulokinase was able to completely utilize glucose and l-arabinose, and 88 % xylose in XML. The 2018glcG-TBA produced total solvents up to 21 g/L with a 50 % enhancement of total solvent yield (0.33 g/g sugar) compared to that of EA 2018 (0.21 g/g sugar) in XML. This XML-based acetone–butanol–ethanol fermentation using recombinant 2018glcG-TBA was estimated to be economically promising for future production of solvents.  相似文献   

6.
The five-carbon sugard-xylose is a major component of hemicellulose and accounts for roughly one-third of the carbohydrate content of many lignocellulosic materials. The efficient fermentation of xylose-rich hemicellulose hydrolyzates (prehydrolyzates) represents an opportunity to improve significantly the economics of large-scale fuel ethanol production from lignocellulosic feedstocks. The National Renewable Energy Laboratory (NREL) is currently investigating a simultaneous saccharification and cofermentation (SSCF) process for ethanol production from biomass that uses a dilute-acid pretreatment and a metabolically engineered strain ofZymomonas mobilis that can coferment glucose and xylose. The objective of this study was to establish optimal conditions for cost-effective seed production that are compatible with the SSCF process design. Two-level and three-level full factorial experimental designs were employed to characterize efficiently the growth performance of recombinantZ. mobilis CP4:pZB5 as a function of nutrient level, pH, and acetic acid concentration using a synthetic hardwood hemicellulose hydrolyzate containing 4% (w/v) xylose and 0.8% (w/v) glucose. Fermentations were run batchwise and were pH-controlled at low levels of clarified corn steep liquor (cCSL, 1-2% v/v), which were used as the sole source of nutrients. For the purpose of assessing comparative fermentation performance, seed production was also carried out using a “benchmark” yeast extract-based laboratory medium. Analysis of variance (ANOVA) of experimental results was performed to determine the main effects and possible interactive effects of nutrient (cCSL) level, pH, and acetic acid concentration on the rate of xylose utilization and the extent of cell mass production. Results indicate that the concentration of acetic acid is the most significant limiting factor for the xylose utilization rate and the extent of cell mass production; nutrient level and pH exerted weaker, but statistically significant effects. At pH 6.0, in the absence of acetic acid, the final cell mass concentration was 1.4 g dry cell mass/L (g DCM/L), but decreased to 0.92 and 0.64 g DCM/L in the presence of 0.5 and 1.0% (w/v) acetic acid, respectively. At concentrations of acetic acid of 0.75 (w/v) or lower, fermentation was complete within 1.5 d. In contrast, in the presence of 1.0% (w/v) acetic acid, 25% of the xylose remained after 2 d. At a volumetric supplementation level of 1.5–2.0% (v/v), cCSL proved to be a cost-effective single-source nutritional adjunct that can support growth and fermentation performance at levels comparable to those achieved using the expensive yeast extract-based laboratory reference medium.  相似文献   

7.
Fermentation kinetics of ethanol production from glucose, xylose, and their mixtures using a recombinant Saccharomyces 1400 (pLNH33) are reported. Single-substrate kinetics indicate that the specific growth rate of the yeast and the specific ethanol productivity on glucose as the substrate was greater than on xylose as a substrate. Ethanol yields from glucose and xylose fermentation were typically 95 and 80% of the theoretical yield, respectively. The effect of ethanol inhibition is more pronounced for xylose fermentation than for glucose fermentation. Studies on glucose-xylose mixtures indicate that the recombinant yeast co-ferments glucose and xylose. Fermentation of a 52.8 g/L glucose and 56.3 g/L xylose mixture gave an ethanol concentration of 47.9 g/L after 36 h. Based on a theoretical yield of 0.51 g ethanol/g sugars, the ethanol yield from this experiment (for data up to 24 h) was calculated to be 0.46 g ethanol/g sugar or 90% of the theoretical yield. The specific growth rate of the yeast on glucose-xylose mixtures was found to lie between the specific growth rate on glucose and the specific growth rate on xylose. Kinetic studies were used to develop a fermentation model incorporating the effects of substrate inhibition, product inhibition, and inoculum size. Good agreements were obtained between model predictions and experimental data from batch fermentation of glucose, xylose, and their mixtures.  相似文献   

8.
The low-energy nitrogen ion beam implantation technique was used in the breeding of mutant d(–)-lactic-acid-producing strains. The wild strain Sporolactobacillus sp. DX12 was mutated by an N+ ion beam with energy of 10keV and doses ranging from 0.4 × 1015 to 6.60 × 1015 ions/cm2. Combined with an efficient screening method, an efficient mutant Y2-8 was selected after two times N+ ion beam implantation. By using the mutant Y2-8, 121.6g/l of d-lactic acid was produced with the molar yields of 162.1% to the glucose. The yield of d-lactic acid by strain Y2-8 was 198.8% higher than the wild strain. Determination of anaerobic metabolism by Biolog MT2 was used to analyze the activities of the concerned enzymes in the lactic acid metabolic pathway. The results showed that the activities of the key enzymes responded on the substrates such as 6-phosphofructokinase, pyruvate kinase, and d-lactate dehydrogenase were considerably higher in the mutants than the wild strain. These might be affected by ion beam implantation.  相似文献   

9.
This work represents a continuation of our investigation into environmental conditions that promote lactic acid synthesis by Zymomonas mobilis. The characteristic near theoretical yield of ethanol from glucose by Z. mobilis can be compromised by the synthesis of d- and l-lactic acid. The production of lactic acid is exacerbated by the following conditions: pH 6.0, yeast extract, and reduced growth rate. At a specific growth rate of 0.048/h, the average yield of dl-lactate from glucose in a yeast extract-based medium at pH 6.0 was 0.15 g/g. This represents a reduction in ethanol yield of about 10% relative to the yield at a growth rate of 0.15/h. Very little lactic acid was produced at pH 5.0 or using a defined salts medium (without yeast extract) Under permissive and comparable culture conditions, a tetracycline-resistant, d-ldh negative mutant produced about 50% less lactic acid than its parent strain Zm ATCC 39676. d-lactic acid was detected in the cell-free spent fermentation medium of the mutant, but this could be owing to the presence of a racemase enzyme. Under the steady-state growth conditions provided by the chemostat, the specific rate of glucose consumption was altered at a constant growth rate of 0.075/h. Shifting from glucose-limited to nitrogen-limited growth, or increasing the temperature, caused an increase in the specific rate of glucose catabolism. There was good correlation between an increase in glycolytic flux and a decrease in lactic acid yield from glucose. This study points to a mechanistic link between the glycolytic flux and the control of end-product glucose metabolism. Implications of reduced glycolytic flux in pentose-fermenting recombinant Z. mobilis strains, relative to increased byproduct synthesis, is discussed.  相似文献   

10.
The fermentation characteristics of two recombinant strains of Zymomonas mobilis, viz. CP4 (pZB5) and ZM4 (pZB5), capable of converting both glucose and xylose to ethanol, have been characterized in batch and continuous culture studies. The strain ZM4 (pZB5) was found to be capable of converting a mixture of 65 g/L glucose and 65 g/L xylose to 62 g/L ethanol in 48h with a yield of 0.46 g/g. Higher sugar concentrations resulted in incompletexylose utilization (80h) presumably owing to ethanol inhibition of xylose assimilation or metabolism. The fermentation results with ZM4 (pZB5) show a significant improvement over results published previously for recombinant yeasts and other bacteria capable of glucose and xylose utilization.  相似文献   

11.
Glucose oxidase from Aspergillus niger, the specific enzyme for β-d-glucose oxidation, can also oxidize other related saccharides at very slow or negligible rates. The present study aimed to compare the kinetics of d-glucose oxidation using immobilized glucose oxidase on bead cellulose for the oxidation of related saccharides using the same biocatalyst. The significant differences were observed between the reaction rates for d-glucose and other saccharides examined. As a result, k cat/K M ratio for d-glucose was determined to be 42 times higher than d-mannose, 61.6 times higher than d-galactose, 279 times higher than d-xylose, and 254 times higher than for d-fructose and d-cellobiose. On the basis of these differences, the ability of immobilized glucose oxidase to remove d-glucose from d-cellobiose, d-glucose from d-xylose, and d-xylose from d-lyxose was examined. Immobilized catalase on Eupergit and mixed with immobilized glucose oxidase on bead cellulose or co-immobilized with glucose oxidase on bead cellulose was used for elimination of hydrogen peroxide from the reaction mixture. The accelerated elimination of d-glucose and d-xylose in the presence of co-immobilized catalase was observed. The co-immobilized glucose oxidase and catalase were able to decrease d-glucose or d-xylose content to 0–0.005% of their initial concentrations, while a minimum decrease of low oxidized saccharides d-xylose, d-cellobiose, and d-lyxose, respectively, was observed.  相似文献   

12.
The effect of glucose on xylose-xylitol metabolism in fermentation medium consisting of sugarcane bagasse hydrolysate was evaluated by employing an inoculum of Candida guilliermondii grown in synthetic media containing, as carbon sources, glucose (30 g/L), xylose (30 g/L), or a mixture of glucose (2 g/L) and xylose (30 g/L). The inoculum medium containing glucose promoted a 2.5-fold increase in xylose reductase activity (0.582 IU/mgprot) and a 2-fold increase in xylitol dehydrogenase activity (0.203 IU/mgprot) when compared with an inoculum-grown medium containing only xylose. The improvement in enzyme activities resulted in higher values of xylitol yield (0.56 g/g) and productivity (0.46 g/[L·h]) after 48 h of fermentation.  相似文献   

13.
The kinetics and regulation of d-xylose uptake were investigated in the efficient pentose fermentor Candida succiphila, and in Kluyveromyces marxianus, which assimilate but do not ferment pentose sugars. Active high-affinity (K m ∼ 3.8 mM; V max ∼ 15 nmol/[mg·min]) and putative facilitated diffusion low-affinity (K m ∼ 140 mM; V max ∼ 130 nmol/[mg·min]) transport activities were found in C. succiphila grown, respectively, on xylose or glucose. K. marxianus showed facilitated diffusion low-affinity (K m ∼ 103 mM; V max ∼ 190 nmol/[mg·min]) transport activity when grown on xylose under microaerobic conditions, and both a low-affinity and an active high-affinity (K m ∼ 0.2 mM; V max ∼ 10 nmol/[mg·min]) transport activity when grown on xylose under fully aerobic conditions.  相似文献   

14.
The gene encoding a glycosyl hydrolase family 3 xylan 1,4-beta-xylosidase, xlnD, was successfully cloned from Aspergillus niger strain ATCC 10864. The recombinant product was expressed in Aspergillus awamori, purified by column chromatography, and verified by matrix-assisted laser desorption ionization, tandem time of flight (MALDI-TOF/TOF) mass spectroscopy of tryptic digests. The T max was determined using differential scanning microcalorimetry (DSC) to be 78.2 °C; the K m and k cat were found to be 255 μM and 13.7 s−1, respectively, using pNP-β-d-xylopyranoside as substrate. End-product inhibition by d-xylose was also verified and shown to be competitive; the K i for this inhibition was estimated to be 3.3 mM. XlnD was shown to efficiently hydrolyze small xylo-oligomers to monomeric xylose, making it a critical hydrolytic activity in cases where xylose is to be recovered from biomass conversion processes. In addition, the presence of the XlnD was shown to synergistically enhance the ability of an endoxylanase, XynA from Thermomyces lanuginosus, to convert xylan present in selected pretreated lignocellulosic substrates. Furthermore, the addition of the XynA/XlnD complex was effective in enhancing the ability of a simplified cellulase complex to convert glucan present in the substrates.  相似文献   

15.
Arabinose utilization by xylose-fermenting yeasts and fungi   总被引:1,自引:0,他引:1  
Various wild-type yeasts and fungi were screened to evaluate their ability to fermentl-arabinose under oxygen-limited conditions when grown in defined minimal media containing mixtures ofl-ara-binose,d-xylose, andd-glucose. Although all of the yeasts and some of the fungi consumed arabinose, arabinose was not fermented to ethanol by any of the strains tested. Arabitol was the only major product other than cell mass formed froml-arabinose; yeasts converted arabinose to arabitol at high yield. The inability to fermentl-arabinose appears to be a consequence of inefficient or incomplete assimilation pathways for this pentose sugar.  相似文献   

16.
Microalgae were screened from seawater for greenhouse gas CO2 fixation and d-lactic acid production by self-fermentation and tested for their growth rate, starch content, and conversion rate from starch into d-lactic acid. More than 300 strains were isolated, and some of them were found to have suitable properties for this purpose. One of the best strains, Nannochlorum, sp. 26A4, which was isolated from Sakito Island, had a starch content of 40% (dry weight), and a conversion rate from consumed starch into d-lactic acid of 70% in the dark under anaerobic conditions. The produced d-lactic acid showed a high optical purity compared with the conventional one. The proposed new d-lactic acid production system using Nannochlorum sp. 26A4 should also be an effective technology for greenhouse gas CO2 fixation and/or conversion into industrial raw materials.  相似文献   

17.
The mechanism of reactions occurring in solution can be investigated also in the gas phase by suited mass spectrometric techniques, which allow to highlight fundamental mechanistic features independent of the influence of the medium and to clarifying controversial hypotheses proposed in solution studies. In this work, we report a gas-phase study performed by electrospray triple stage quadrupole mass spectrometry (ESI-TSQ/MS) on the dehydration of d-xylose, leading mainly to the formation of 2-furaldehyde (2-FA). It is generally known in carbohydrate chemistry that the thermal acid catalyzed dehydration of pentoses leads to the formation of 2-FA, but several aspects on the solution-phase mechanism are controversial. Here, gaseous reactant ions corresponding to protonated xylose molecules obtained from ESI of a solution containing d-xylose and ammonium acetate as protonating reagent were allowed to undergo collisionally activated decomposition (CAD) into the triple stage quadrupole analyzer. The product ion mass spectra of protonated xylose are characterized by the presence of ionic intermediates arising from xylose dehydration, which were structurally characterized by their fragmentation patterns. As expected, the xylose triple dehydration leads to the formation of the ion at m/z 97, corresponding to protonated 2-FA. On the basis of mass spectrometric evidences, we demonstrated that in the gas phase, the formation of 2-FA involves protonation at the OH group bound to the C1 atom of the sugar, the first ionic intermediate being characterized by a cyclic structure. Finally, energy resolved product ion mass spectra allowed to obtain information on the energetic features of the d-xylose→2-FA conversion.
Figure
?  相似文献   

18.
Cellulase production by the RUT-C30 mutant of the fungusTrichoderma reesei was studied on mixtures of xylose and cellulose. In mixed substrates, the lag phase of the growth cycle was shorter and reached the maximum of total productivity in a shorter time compared to growth on the single substrate, cellulose. A diauxic pattern of utilization of the two carbon sources was observed as well: Xylose was utilized first to support growth, followed by cellulose to induce the cellulase enzyme production and provide an additional carbon source for cellular metabolism. Of the various mixtures of xylose and cellulose used in batch enzyme production, a ratio of 30∶30 g/L of xylose to cellulose was optimal. This mixture produced the highest maximal enzyme productivity of 122 IFPU/L h, and its total productivity reached a maximum value of 55 IFPU/L h in less time than others. However, similar total productivities and higher enzyme titers were observed for growth on cellulose alone.  相似文献   

19.
d-Xylose is a major constituent of hemicellulose, which makes up 20–30% of renewable biomass in nature.d-Xylose can be fermented by most yeasts, includingSaccharomyces cerevisiae, by a two-stage process. In this process, xylose is first converted to xylulose in vitro by the enzyme xylose (glucose) isomerase, and the latter sugar is then fermented by yeast to ethanol. With the availability of an inexpensive source of xylose isomerase produced by recombinantE. coli, this process of fermenting xylose to ethanol can become quite effective. In this paper, we report that yeast xylose and xylulose fermentation can be further improved by cloning and overexpression of the xylulokinase gene. For instance, the level of xylulokinase activity in S.cerevisiae can be increased 230fold by cloning its xylulokinase gene on a high copy-number plasmid, coupled with fusion of the gene with an effective promoter. The resulting genetically-engineered yeasts can ferment xylose and xylulose more than twice as fast as the parent yeast.  相似文献   

20.
A mutant strain ofPichia stipitis, FPL-061, was obtained by selecting for growth on L-xylose in the presence of respiratory inhibitors. The specific fermentation rate of FPL-061, was higher than that of the parent,Pichia stipitis CBS 6054, because of its lower cell yield and growth rate and higher specific substrate uptake rate. With a mixture of glucose and xylose, the mutant strain FPL-061 produced 29.4 g ethanol/L with a yield of 0.42 g ethanol/g sugar consumed. By comparison, CBS 6054 produced 25.7 g ethanol/L with a yield of 0.35 gJg. The fermentation was most efficient at an aeration rate of 9.2 mmoles O2 L-1 h-1. At high aeration rates (22 mmoles O2 L-1 h-1), the mutant cell yield was less than that of the parent. At low aeration rates, (1.1 to 2.5 O2 L-1 h-1), cell yields were similar, the ethanol formation rates were low, and xylitol accumulation was observed in both the strains. Both strains respired the ethanol once sugar was exhausted. We infer from the results that the mutant, P.stipitis FPL-061, diverts a larger fraction of its metabolic energy from cell growth into ethanol production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号