首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Two sensitive and reproducible methods were developed and validated for the determination of ziprasidone (ZIP) in the presence of its degradation products in pure form and in pharmaceutical formulations. The fi rst method was based on reversed-phase high-performance liquid chromatography (HPLC), on a Lichrosorb RP C(18) column using water:acetonitrile:phosphoric acid (76:24:0.5 v/v/v) as the mobile phase at a fl ow rate of 1.5 mL min(-1) at ambient temperature. Quantification was achieved with UV detection at 229 nm over a concentration range of 10-500 micro g mL(-1) with mean percentage recovery of 99.71 +/- 0.55. The method retained its accuracy in presence of up to 90% of ZIP degradation products. The second method was based on TLC separation of ZIP from its degradation products followed by densitometric measurement of the intact drug spot at 247 nm. The separation was carried out on aluminium sheet of silica gel 60 F(254) using choloroform:methanol:glacial acetic acid (75:5:4.5 v/v/v) as the mobile phase, over a concentration range of 1-10 micro g per spot and mean percentage recovery of 99.26 +/- 0.39. Both methods were applied successfully to laboratory prepared mixtures and pharmaceutical capsules.  相似文献   

2.
This paper describes validated high-performance liquid chromatographic (LC) and high-performance thin-layer chromatographic (TLC) methods for the simultaneous estimation of olanzapine and fluoxetine in pure powder and tablet formulations. The LC separation was achieved on a Lichrospher 100 RP-180, C18 column (250 mm, 4.0 mm id, 5 microm) using 0.05 M potassium dihydrogen phosphate buffer (pH 5.6 adjusted with o-phosphoric acid)-acetonitrile (50 + 50, v/v) as the mobile phase at a flow rate of 1 mL/min and ambient temperature. The TLC separation was achieved on aluminum sheets coated with silica gel 60F254 using methanol-toluene (40 + 20, v/v) as the mobile phase. Quantitation was achieved by measuring ultraviolet absorption at 233 nm over the concentration range of 10-70 and 40-280 microg/mL with mean recovery of 99.54 +/- 0.89 and 99.73 +/- 0.58% for olanzapine and fluoxetine, respectively, by the LC method. Quantitation was achieved by measuring ultraviolet absorption at 233 nm over the concentration range of 100-800 and 400-3200 ng/spot with mean recovery of 101.53 +/- 0.06 and 101.45 +/- 0.35% for olanzapine and fluoxetine, respectively, by the TLC method with densitometry. These methods are simple, precise, and sensitive, and they are applicable for simultaneous determination of olanzapine and fluoxetine in tablet formulations.  相似文献   

3.
Three new, different, simple, sensitive, and accurate methods were developed for quantitative determination of nifuroxazide (I) and drotaverine hydrochloride (II) in a binary mixture. The first method was spectrophotometry, which allowed determination of I in the presence of II using a zero-order spectrum with an analytically useful maximum at 364.5 nm that obeyed Beer's law over a concentration range of 2-10 microg/mL with mean percentage recovery of 100.08 +/- 0.61. Determination of II in presence of I was obtained by second derivative spectrophotometry at 243.6 nm, which obeyed Beer's law over a concentration range of 2-10 microg/mL with mean recovery of 99.82 +/- 1.46%. The second method was spectrodensitometry, with which both drugs were separated on a silica gel plate using chloroform-acetone-methanol-glacial acetic acid (6 + 3 + 0.9 + 0.1) as the mobile phase and ultraviolet (UV) detection at 365 nm over a concentration range of 0.2-1 microg/band for both drugs, with mean recoveries of 99.99 +/- 0.15 and 100.00 +/- 0.34% for I and II, respectively. The third method was reversed-phase liquid chromatography using acetonitrile-water (40 + 60, v/v; adjusted to pH 2.55 with orthophosphoric acid) as the mobile phase and pentoxifylline as the internal standard at a flow rate of 1 mU/min with UV detection at 285 nm at ambient temperature over a concentration range of 2-10 microg/mL for both drugs, with mean recoveries of 100.24 +/- 1.51 and 100.08 +/- 0.78% for I and II, respectively. The proposed methods were checked using laboratory-prepared mixtures and were successfully applied for the analysis of pharmaceutical formulations containing the above drugs with no interference from other dosage form additives. The validity of the suggested procedures was further assessed by applying the standard addition technique which was found to be satisfactory, and the percentage recoveries obtained were in accordance with those given by the EVA Pharma reference spectrophotometric method.  相似文献   

4.
This paper describes validated high-performance liquid chromatography (HPLC) and high-performance thin-layer chromatography (HPTLC) methods for the simultaneous estimation of pantoprazole (PANT) and domperidone (DOM) in pure powder and capsule formulations. The HPLC separation was achieved on a Phenomenex C18 column (250 mm id, 4.6 mm, 5 pm) using 0.01 M, 6.5 pH ammonium acetate buffer-methanol-acetonitrile (30 + 40 + 30, v/v/v, pH 7.20) as the mobile phase at a flow rate of 1.0 mL/min at ambient temperature. The HPTLC separation was achieved on an aluminum-backed layer of silica gel 60F254 using ethyl acetate-methanol (60 + 40, v/v) as the mobile phase. Quantification was achieved with ultraviolet (UV) detection at 287 nm over the concentration range 400-4000 and 300-3000 ng/mL with mean recovery of 99.35+/-0.80 and 99.08+/-0.57% for PANT and DOM, respectively (HPLC method). Quantification was achieved with UV detection at 287 nm over the concentration range 80-240 and 60-180 ng/spot with mean recovery of 98.40+/-0.67 and 98.75+/-0.71% for PANT and DOM, respectively (HPTLC method). These methods are simple, precise, and sensitive, and they are applicable for the simultaneous determination of PANT and DOM in pure powder and capsule formulations.  相似文献   

5.
A liquid chromatography (LC) method and an ultraviolet (UV) spectrophotometric method were developed and validated for quantitative determination of amlodipine in tablets and compounded capsules. The isocratic LC analyses were performed on an RP18 column using a mobile phase composed of 0.1% (v/v) ortho-phosphoric acid (pH 3.0) -acetonitrile (60 + 40, v/v) at a flow rate of 1.0 mL/min. The UV spectrophotometric method was performed at 238 nm. The analytical methods were validated according to International Conference on Harmonization Guidelines. The calibration graphs were linear [correlation coefficient (r) > 0.999] in the studied concentration range of 10-30 microg/mL for LC and 10-35 microg/mL for UV spectrophotometry. The relative standard deviation values for intraday and interday precision studies were less than 2%, and the accuracy was greater than 98% for both methods. The specificity of the LC method was proved using forced degradation. Statistical analyses showed no significant difference between the results obtained by the 2 methods. The proposed methods are precise and accurate and can be applied directly and easily to the oral pharmaceutical preparations of amlodipine.  相似文献   

6.
The zearalenone content of maize, wheat, barley, swine feed, and poultry feed samples was determined by immunoaffinity column cleanup followed by liquid chromatography (IAC-LC). Samples were extracted in methanol-water (8 + 2, v/v) solution. The filtered extract was diluted with distilled water and applied to immunoaffinity columns. Zearalenone was eluted with methanol, dried by evaporation, and dissolved in acetonitrile-water (3 + 7, v/v). Zearalenone was separated by isocratic elution of acetonitrile-water (50 + 50, v/v) on reversed-phase C18 column. The quantitative analysis was performed by fluorescence detector and confirmation was based on the UV spectrum obtained by a diode array detector. The mean recovery rate of zearalenone was 82-97% (RSD, 1.4-4.1%) on the original (single-use) immunoaffinity columns. The limit of detection of zearalenone by fluorescence was 10 ng/g at a signal-to-noise ratio of 10:1 and 30 ng/g by spectral confirmation in UV. A good correlation was found (R2 = 0.89) between the results obtained by IAC-LC and by the official AOAC-LC method. The specificity of the method was increased by using fluorescence detection in parallel with UV detection. This method was applicable to the determination of zearalenone content in cereals and other kinds of feedstuffs. Reusability of immunoaffinity columns was examined by washing with water after sample elution and allowing columns to stand for 24 h at room temperature. The zearalenone recovery rate of the regenerated columns varied between 79 and 95% (RSD, 3.2-6.3%). Columns can be regenerated at least 3 times without altering their performance and without affecting the results of repeated determinations.  相似文献   

7.
A simple, sensitive and rapid high-performance liquid chromatography/electrospray ionization tandem mass spectrometry method was developed and validated for the assay of amlodipine in human plasma. Following liquid-liquid extraction, the analytes were separated using an isocratic mobile phase on a reverse-phase C(18) column and analyzed by MS in the multiple reaction monitoring mode using the respective [M+H]+ ions, m/z 409/238 for amlodipine and m/z 409/228 for the IS. The assay exhibited a linear dynamic range of 50-10,000 pg/mL for amlodipine in human plasma. The lower limit of quantification was 50 pg/mL with a relative standard deviation of less than 8%. Acceptable precision and accuracy were obtained for concentrations over the standard curve range. The average absolute recoveries of amlodipine and the IS from spiked plasma samples were 74.7 +/- 4.6 and 72.1 +/- 2.0%, respectively. A run time of 1.5 min for each sample made it possible to analyze more than 400 human plasma samples per day. The validated method has been successfully used to analyze human plasma samples for application in pharmacokinetic, bioavailability or bioequivalence studies. The observed maximum plasma concentration (Cmax) of amlodipine (2.5 mg oral dose) was 1425 pg/mL, time to observed maximum plasma concentration (Tmax) was 8.1 h and elimination half-life (T(1/2)) was 50.1 h.  相似文献   

8.
In this study a clear separation between seven analogues of artemisinin on thin-layer chromatography (TLC) is presented. The developed TLC method is carried out on a RP-C18 thin-layer plate using acetonitrile-water (50:25 v/v) as the mobile phase. Spots are visualized by derivatization with an acidified 4-methoxybenzaldehyde reagent in methanol-water. This method allows the separation of a diverse group of compounds that have versatile hydrophilic/lipophilic characteristics; namely artemisinin, artesunate (AS), artelinic acid (AL), arteether (AE), both isomers of artemether (AM) (alpha and beta), dihydroartemisinin, and desoxyartemisinin. Separation of some degradation products and impurities, down to 2%, allows quality control and stability investigation of all actives in raw material and pharmaceutical formulations. The method is further developed via densitometric measurement for quantitative determination purposes for AL and AS. The derivatization technique is evaluated, showing good stability and reproducibility of the coloring process. Percent relative standard deviation values are less than 5% for replicates, and linearity is obtained in the range of 0.5 to 8 microg. A comparative study with high-performance liquid chromatography (HPLC) on a C18 column, applying the same mobile phase, proves the suitability of the TLC method, in which almost all presented analytes are separated from each other. In contrast, HPLC requires at least a 20-min analysis to chromatograph all of the compounds and only betaAM and AE are clearly separated from each other and from the other compounds.  相似文献   

9.
This paper describes validated high-performance column liquid chromatographic (HPLC) and high-performance thin-layer chromatographic (HPTLC) methods for simultaneous estimation of acetylsalicylic acid (ASA) and clopidogrel bisulfate (CLP) in pure powder and formulations. The HPLC separation was achieved on a Nucleosil C8 column (150 mm length x 4.6 mm id, 5 microm particle size) using acetonitrile-phosphate buffer, pH 3.0 (55 + 45, v/v) mobile phase at a flow rate of 1.0 mL/min at ambient temperature. The HPTLC separation was achieved on an aluminum-backed layer of silica gel 60F254 using ethyl acetate-methanol-toluene-glacial acetic acid (5.0 + 1.0 + 4.0 + 0.1, v/v/v/v) mobile phase. Quantitation was achieved with UV detection at 235 nm over the concentration range 4-24 microg/mL for both drugs, with mean recoveries of 99.98 +/- 0.28 and 100.16 +/- 0.66% for ASA and CLP, respectively, using the HPLC method. Quantitation was achieved with UV detection at 235 nm over the concentration range of 400-1400 ng/spot for both drugs, with mean recoveries of 99.93 +/- 0.55 and 100.21 +/- 0.83% for ASA and CLP, respectively, using the HPTLC method. These methods are simple, precise, and sensitive, and they are applicable for the simultaneous determination of ASA and CLP in pure powder and formulations.  相似文献   

10.
The objective of this study was the development, optimization, and validation of a novel reverse-phase high-pressure liquid chromatography (RP-HPLC) method for the quantification of reduced glutathione in pharmaceutical formulations utilizing simple UV detection. The separation utilized a C18 column at room temperature and UV absorption was measured at 215 nm. The mobile phase was an isocratic flow of a 50/50 (v/v) mixture of water (pH 7.0) and acetonitrile flowing at 1.0 mL/min. Validation of the method assessed the methods ability in seven categories: linearity, range, limit of detection, limit of quantification, accuracy, precision, and selectivity. Analysis of the system suitability showed acceptable levels of suitability in all categories. Likewise, the method displayed an acceptable degree of linearity (r(2) = 0.9994) over a concentration range of 2.5-60 μg/mL. The detection limit and quantification limit were 0.6 and 1.8 μg/mL respectively. The percent recovery of the method was 98.80-100.79%. Following validation the method was employed in the determination of glutathione in pharmaceutical formulations in the form of a conjugate and a nanoparticle. The proposed method offers a simple, accurate, and inexpensive way to quantify reduced glutathione.  相似文献   

11.
The purpose of this work was to develop a sensitive, selective, and validated stability-indicating high-performance liquid chromatographic (LC) assay of atorvastatin (ATV) in bulk drug and tablet form. ATV was subjected to different stress conditions, including UV light, oxidation, acid-base hydrolysis, and temperature. ATV and its degradation products were analyzed on an Agilent Zorbax XDB C18 column using isocratic elution with acetonitrile-0.02 M sodium acetate, pH 4.2 (45 + 55, v/v) for 25 min. The samples were monitored with fluorescence (FL) detection at 282 nm (excitation)/400 nm (emission). The response ratio of FL to UV detection (at 247 nm) for ATV was 1.66. The method showed good resolution of ATV from its decomposition products. The photodegradation products were separated by silica gel thin-layer chromatography using double development with ethyl acetate-n-hexane-glacial acetic acid-methanol (40 + 55 + 0.5 + 4.5, v/v/v/v) followed by (39 + 55 + 0.5 + 5.5, v/v/v/v), and confirmed by LC-FL analysis. The FL response was linear over the investigated range for ATV. The linear range was 10-1200 ng/injection, and the limit of quantitation was 2.0 ng/injection.  相似文献   

12.
In the present paper, for the first time, we are interested to separate and identify some bioactive fractions isolated from the roots of a Saharan plant Anabasis articulata, which is widely used in traditional medicine against cancer. The crude methanolic extract of the roots was fractionated on column chromatography, and eluted with dichloromethane/methanol each time with increasing polarity of methanol; 17 fractions were separated. One of these fractions named F12 showed more antioxidant activity to scavenge DPPH free radical with percentage inhibition of 95.29%. F12 was separated by thin-layer chromatography (TLC) to give 12 compounds. A second preparative TLC of compound 2, which has antioxidative activity of 74.92%, provided the three phenolic acids M1, M2 and M3, analysed by high-performance liquid chromatography and UV–visible spectrophotometry.  相似文献   

13.
A novel method for the determination of iodide by size exclusion chromatography was established. The method was simple and highly sensitive with good precision. Iodide was converted to iodine, then sequestered with starch, and separated from the matrix using a Shim-pack DIOL-150 (250 x 7.9 mm) size exclusion column with methanol-0.01 mol l(-1) aqueous phosphoric acid (10:90, v/v) as mobile phase at 1.2 ml min(-1) and UV detection at 224 nm. The calibration graph was linear from 1.0 ng ml(-1) to 100.0 ng ml(-1) for iodide with a correlation coefficient of 0.9992 (n=6). The detection limit was 0.2 ng ml(-1). The method was successfully applied to the determination of iodide in seawater and urine. The recovery was from 92% to 103% and the relative standard deviation was in the range of 1.5% to 3.7%.  相似文献   

14.
Column liquid chromatography (LC) and thin-layer chromatography (TLC)-densitometry methods are described for simultaneous determination of acediasulfone (Ace) and cinchocaine (Cinco). In the LC method, the separation and quantitation of the 2 drugs was achieved on a Zorbax C8 column (5 microm, 150 x 4.6 mm id) using a mobile phase composed of methanol-phosphate buffer, pH 2.5 (66 + 34, v/v), at a flow rate of 1 mL/min and ultraviolet detection at 300 and 327 nm for Ace and Cinco, respectively. The method showed linearity over concentration ranges of 20-200 and 45-685 microg/mL, respectively. In the TLC-densitometry method, a mobile phase composed of methanol-tetrahydrofuran-acetic acid (45 + 5 + 0.5, v/v/v) was used for the separation of the 2 drugs. The linearity range was 0.5-4 and 2-9 microg/spot, respectively. In addition, stability indicating TLC-densitometry method has been developed for determination of cefuroxime sodium in the presence of 5-70% of its known hydrolytic degradation products. The mobile phase butanol-methanol-tetrahydrofuran-concentrated ammonium hydroxide (50 + 50 + 50' + 5, v/v/v/v) was used. The concentration range was 2-10 microg/spot. The optimized methods proved to be specific and accurate for the analysis of the cited drugs in laboratory-prepared mixtures and dosage forms. The obtained results agreed statistically with those obtained by the reference methods.  相似文献   

15.
Three stability-indicating assay methods were developed for the determination of tropisetron in a pharmaceutical dosage form in the presence of its degradation products. The proposed techniques are HPLC, TLC, and first-derivative spectrophotometry (1D). Acid degradation was carried out, and the degradation products were separated by TLC and identified by IR, NMR, and MS techniques. The HPLC method was based on determination of tropisetron in the presence of its acid-induced degradation product on an RP Nucleosil C18 column using methanol-water-acetonitrile-trimethylamine (65 + 20 + 15 + 0.2, v/v/v/v) mobile phase and UV detection at 285 nm. The TLC method was based on the separation of tropisetron and its acid-induced degradation products, followed by densitometric measurement of the intact spot at 285 nm. The separation was carried out on silica gel 60 F254 aluminum sheets using methanol-glacial acetic acid (22 + 3, v/v) mobile phase. The 1D method was based on the measurement of first-derivative amplitudes of tropisetron in H2O at the zero-crossing point of its acid-induced degradation product at 271.9 nm. Linearity, accuracy, and precision were found to be acceptable over concentration ranges of 40-240 microg/mL, 1-10 microg/spot, and 6-36 micro/mL for the HPLC, TLC, and 1D methods, respectively. The suggested methods were successfully applied for the determination of the drug in bulk powder, laboratory-prepared mixtures, and a commercial sample.  相似文献   

16.
《Analytical letters》2012,45(4):570-581
Two simple, sensitive, and specific high-performance liquid chromatography and thin-layer chromatography methods were developed for the simultaneous estimation of Amlodipine besilate (AM) and Valsartan (VL). Separation by HPLC was achieved using a xTerra C18 column and methanol /acetonitrile /water/ 0.05% triethylamine in a ratio 40:20:30:10 by volume as mobile phase, pH was adjusted to 3 ± 0.1 with o-phosphoric acid. The flow rate was 1.2 mL min?1. The linearity range was 0.2 to 2 µg mL?1 for amlodipine besilate and 0.4 to 4 µg mL?1 for Valsartan with a mean percentage recovery of 99.59 ± 0.523% and 100.61 ± 0.400% for amlodipine besilate and valsartan, respectively. The TLC method used silica gel 60 F254 plates; the optimized mobile phase was ethyl acetate/ methanol / ammonium hydroxide (55:45:5 by volume). Quantitatively, the spots were scanned densitometrically at 237 nm. The range was 0.5–4.0 µg spot?1 for amlodipine besilate and 2.0–12.0 µg spot?1 for valsartan. The mean percentages recovery was 99.80 ± 0.451% and 100.61 ± 0.363% for amlodipine besilate and valsartan, respectively. The HPLC method was found to be simple, selective, precise, and reproducible for the estimation of both drugs from spiked human plasma.  相似文献   

17.
Second derivative-spectrophotometric and high-performance liquid chromatographic methods for the determination of prednisolone in pharmaceutical formulations have been developed. Determination of prednisolone in tablets was conducted by using a second-order derivative UV spectrophotometric method at 250 nm (n = 5). Standards for the calibration graph ranging from 5.0 to 35.0 microg/ml were prepared from stock solution. The proposed method was accurate, with 98% recovery value, and precise, with a coefficient of variation (CV) of 1.38. These results were compared with those obtained by an exclusively developed isocratic reversed-phase high-performance liquid chromatography (HPLC) method. An isocratic reversed-phase Bondapak C(18) column with acetonitrile-citrophosphate buffer (pH 5; 45:55 v/v) mobile phase was used and UV detector was set to 241 nm using 11 alpha-hydroxyprogesterone as an internal standard. Calibration solutions used in HPLC were in the range from 2 to 300 microg/ml. Results obtained by derivative UV spectrophotometric method were comparable to those obtained by HPLC method, as far as analysis of variance (ANOVA) test, F(calculated), 0.762 and F(theoretical), 3.89, results were concerned.  相似文献   

18.
The application of micro HPLC to the determination of amygdalin in Semen pruni armeniacae and Semen pruni persicae is described. Amygdalin is separated at ambient temperature on a reversed phase column of U-Finepak SIL C18(150 x 0.5 mm) with methanol + water (25:75 v/v) as the mobile phase at a flow rate of 10 microL/min. The results are calculated by the internal standard method. The linear range is 1-7 micrograms. The CV and recovery of pure amygdalin are 1.47% (n = 10) and 98.13%, respectively. The results of analysis are lower than those obtained by TLC, but microHPLC is much simpler, faster, and more sensitive and reproducible than TLC.  相似文献   

19.
Different methodologies based on thin-layer chromatography (TLC)/densitometry were used to separate and quantitate hydrocarbon types in middle distillates (gas oil), heavy distillates (lubricant) from petroleum, and coal-derived products. Thus, petroleum products were separated into saturates and aromatics by development, using n-hexane (9 min) followed by dichloromethane (4.5 min), of silica gel plates impregnated with berberine sulfate. Detection of saturates and aromatics was performed by fluorescence scanning using 365 nm as the excitation wavelength. Alternative detection of aromatics can be performed on either silica gel or berberine-impregnated plates by using ultraviolet (UV) densitometry at 250 nm. On the other hand, polar coal-derived products were separated into aromatics, polar compounds, and uneluted components by using silica gel plates and development with toluene (12 min), followed by dichloromethane-methanol (95 + 5, v/v), with detection by UV densitometry at 250 nm. In all cases, external standard calibration was used for quantitation. Results were validated by using standard methods or well-established techniques of the petrochemical industry. The potential usefulness of TLC/densitometry is discussed.  相似文献   

20.
A rapid and effective isocratic chromatographic procedure is successfully developed to determinate methotrexate (MTX) entrapment efficiency (EE) in polymeric nanocapsules using reversed-phase high-performance liquid chromatography. The method employed a RP-C(18) Shimadzu Shim-pack CLC-ODS (150 mm x 4.6 mm, 5 microm) column with mobile phase constituted by a mixture of water-acetonitrile-tetrahydrofuran (65:30:5 v/v/v; pH 3.0) at a flow rate of 0.8 mL/min. The eluate is monitored with a UV detector set at 313 nm. The parameters used in the validation process are: linearity, specificity, precision, accuracy, and limit of quantitation (LOQ). The linearity is evaluated by a calibration curve in the concentration range of 10-50 microg/mL and presented a correlation coefficient of 0.9998. The polymers (PLA or PLA-PEG), oil, and surfactants used in the nanocapsule formulation did not interfere with analysis and the recovery was quantitative. The intra and inter-day assay relative standard deviation were less than 0.72%. Results are satisfactory, and the method proved to be adequate for the determination of methotrexate in nanocapsules formulations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号