首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Templated microporous carbons were synthesized from metal impregnated zeolite Y templates. Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) were employed to characterize morphology and structure of the generated carbon materials. The surface area, micro- and meso-pore volumes, as well as the pore size distribution of all the carbon materials were determined by N2 adsorption at 77 K and correlated to their hydrogen storage capacity. All the hydrogen adsorption isotherms were Type 1 and reversible, indicating physisorption at 77 K. Most templated carbons show good hydrogen storage with the best sample Rh-C having surface area 1817 m2/g and micropore volume 1.04 cm3/g, achieving the highest as 8.8 mmol/g hydrogen storage capacity at 77 K, 1 bar. Comparison between activated carbons and synthesized templated carbons revealed that the hydrogen adsorption in the latter carbon samples occurs mainly by pore filling and smaller pores of sizes around 6 Å to 8 Å are filled initially, followed by larger micropores. Overall, hydrogen adsorption was found to be dependent on the micropore volume as well as the pore-size, larger micropore volumes showing higher hydrogen adsorption capacity.  相似文献   

2.
Hydrogen adsorption isotherms were measured both at cryogenic temperatures below 1 atm and at ambient temperature at high pressures, up to 90 atm, on selected porous carbons with various pore structures. The nonlocal density functional theory (NLDFT) model was used to calculate the pore size distributions (PSDs) of the carbons, from H2 adsorption isotherms measured at 77 K, and then to predict H2 adsorption on these carbons at 87 and 298 K. An excellent agreement between the predicted and measured data was obtained. Prior to analyzing the porous carbons, the solid-fluid interaction parameters used in the NLDFT model were derived from H2 adsorption data measured at 77 K on nonporous carbon black. The results show that the NLDFT model with appropriate parameters may be a useful tool for optimizing carbon pore structures and designing adsorption systems for hydrogen storage applications.  相似文献   

3.
Zeolite-casted microporous carbons (ZMiPCs) were synthesized using the replica casting method. The ZMiPC were also treated chemically by H(3)PO(4) (A-ZMiPC) or KOH (B-ZMiPC) impregnation, to investigate the effect of the acceptor-donor interaction on the hydrogen storage behaviors. The presence of functional groups of the modified ZMiPC surfaces was confirmed by X-ray photoelectron spectroscopy. The total acidity of the carbon surfaces was determined using the Boehm titration method. The microstructure was characterized by X-ray diffraction. The N(2)/77K adsorption/desorption isotherms were analyzed to characterize specific surface area, pore volume, and pore size distribution of the samples. The capacity of hydrogen adsorption was evaluated using a pressure-composition-temperature apparatus at 298K/100bar. From these results, the specific surface areas and micropore volume of ZMiPC increased more than two fold compared to the zeolite template. Meanwhile, the textural properties of A-ZMiPC and B-ZMiPC were decreased by the chemical treatments. Consequently, the largest hydrogen storage was obtained on A-ZMiPC, even though their textural properties had decreased, due to a charge induced dipole interaction between the modified carbon surface and hydrogen molecules.  相似文献   

4.
Hydrogen adsorption on functionalized nanoporous activated carbons   总被引:2,自引:0,他引:2  
There is considerable interest in hydrogen adsorption on carbon nanotubes and porous carbons as a method of storage for transport and related energy applications. This investigation has involved a systematic investigation of the role of functional groups and porous structure characteristics in determining the hydrogen adsorption characteristics of porous carbons. Suites of carbons were prepared with a wide range of nitrogen and oxygen contents and types of functional groups to investigate their effect on hydrogen adsorption. The porous structures of the carbons were characterized by nitrogen (77 K) and carbon dioxide (273 K) adsorption methods. Hydrogen adsorption isotherms were studied at 77 K and pressure up to 100 kPa. All the isotherms were Type I in the IUPAC classification scheme. Hydrogen isobars indicated that the adsorption of hydrogen is very temperature dependent with little or no hydrogen adsorption above 195 K. The isosteric enthalpies of adsorption at zero surface coverage were obtained using a virial equation, while the values at various surface coverages were obtained from the van't Hoff isochore. The values were in the range 3.9-5.2 kJ mol(-1) for the carbons studied. The thermodynamics of the adsorption process are discussed in relation to temperature limitations for hydrogen storage applications. The maximum amounts of hydrogen adsorbed correlated with the micropore volume obtained from extrapolation of the Dubinin-Radushkevich equation for carbon dioxide adsorption. Functional groups have a small detrimental effect on hydrogen adsorption, and this is related to decreased adsorbate-adsorbent and increased adsorbate-adsorbate interactions.  相似文献   

5.
孔结构对活性炭吸附水溶液中铅离子的影响   总被引:2,自引:0,他引:2  
选取三种表面化学性质相近的活性炭(AC),通过等温吸附实验考察活性炭对水溶液中铅离子的吸附性能,利用扫描电子显微镜(SEM)观察活性炭的表面微观形貌,通过低温(77 K)液氮吸附测定活性炭的比表面积和孔容,并分别以密度泛函理论(DFT)和Barrett-Joyner-Halenda (BJH)法计算微孔和中孔的孔径分布.结果表明:选用的三种活性炭AC1、AC2、AC3在比表面积和总孔容上呈依次下降的趋势,但表面开放孔均匀分布的AC2,具有最高的饱和吸附量,孔结构类似颗粒堆积孔的AC3,具有与表面开放孔分布集中的AC1相近的饱和吸附量;通过对孔结构与吸附量的关联分析可知,在活性炭吸附铅离子的过程中, 0.4-0.6 nm的孔是有效吸附孔, 10.5-20.6 nm、20.6-55.6 nm、5.2-10.5 nm三个区间的孔则会对吸附产生阻碍作用.  相似文献   

6.
This study presents an experimental and theoretical analysis of the effect of surface heterogeneity on the capacity of 20 commercial activated carbons to adsorb hydrogen at 77 and 258 K and for maximum pressures of 20 bar. Some of the samples have been subjected to surface modification by impregnation or by surface oxidation prior to the hydrogen adsorption measurements. All the activated carbons have been analyzed by N2 adsorption at 77 K using the thermodynamic isotherm presented in a previous study. The hydrogen adsorption capacity of the activated carbons has been well correlated to the micropore volume and the characteristic m2 parameter of the thermodynamic isotherm accounting for the energy heterogeneity of the material. On the basis of the model presented here, we discuss how surface heterogeneity, in addition to the adsorption strength, might affect the ability of activated carbons and related materials to adsorb hydrogen.  相似文献   

7.
The influence of the pore size distribution of activated carbon on the adsorption of phenol from aqueous solutions was explored. Activated carbons with different porous structures were prepared by gasifying a bituminous coal char to different extents of burn-off. The results of adsorption experiments show that the phenol capacity of these carbons does not proportionally increase with their BET surface area. This reflects the heterogeneity of the carbon surface for adsorption. The pore size distributions of these carbons, determined according to the Dubinin-Stoeckli equation, were found to vary with the burn-off level. By incorporating the distribution with the Dubinin-Radushkevich equation using an inverse proportionality between the micropore size and the adsorption energy, the isotherms for the adsorption of phenol onto these carbons can be well predicted. The present study has demonstrated that the heterogeneity of carbon surface for the phenol adsorption can be attributed to the different energies required for adsorption in different-size micropores. Copyright 2000 Academic Press.  相似文献   

8.
We prepared ordered porous carbons (PCs) by using a replication method that had well-organized mesoporous silica as a template with various carbonization temperatures in order to investigate the possibility of energy storage materials. The microstructure and morphologies of the samples are characterized by XRD, TEM, and FT-Raman spectroscopy. N2 adsorption isotherms are analyzed by the t-plot method, as well as the BET and the H–K method in order to characterize the specific surface area, pore volume, and pore size distribution of the samples, respectively. The capacity of the hydrogen adsorption of the samples is evaluated by BEL-HP at 77 K and 1 bar. From the results, we are able to confirm that the synthesis of the samples can be accurately governed by the carbonization temperature, which is one of the effective parameters for developing the textural properties of the carbon materials, which affects the behaviors of the hydrogen storage.  相似文献   

9.
In this work, porous carbons with well-developed pore structures were directly prepared from a weak acid cation exchange resin (CER) by the carbonization of a mixture with Mg acetate in different ratios. The effect of the Mg acetate-to-CER ratio on the pore structure and CO(2) adsorption capacities of the obtained porous carbons was studied. The textural properties and morphologies of the porous carbons were analyzed via N(2)/77K adsorption/desorption isotherms, SEM, and TEM, respectively. The CO(2) adsorption capacities of the prepared porous carbons were measured at 298 K and 1 bar and 30 bar. By dissolving the MgO template, the porous carbons exhibited high specific surface areas (326-1276 m(2)/g) and high pore volumes (0.258-0.687 cm(3)/g). The CO(2) adsorption capacities of the porous carbons were enhanced to 164.4 mg/g at 1 bar and 1045 mg/g at 30 bar by increasing the Mg acetate-to-CER ratio. This result indicates that CER was one of the carbon precursors to producing the porous structure, as well as for improving the CO(2) adsorption capacities of the carbon species.  相似文献   

10.
汉麻杆基活性炭表面织构与储氢性能的研究   总被引:2,自引:0,他引:2  
以天然汉麻杆为原料,采用KOH化学活化的方法改变活化时间制备出了高比表面积活性炭,并且对其表面进行硝酸氧化处理,研究活性炭表面化学状态对其吸附性能的影响。采用77 K低温氮气吸附和FTIR对样品进行了表征,并在77 K、100 kPa的条件下测定样品的氢气吸附等温线。结果表明,所有样品具有较高的比表面积(2 435.93~3 240.95 m2·g-1)和总孔容(1.3~1.98 cm3·g-1),且随活化时间的延长而增加,3.5 h达到最大值,之后由于骨架坍塌有所减小。所有样品的孔径分布较为一致呈多峰型分布,主要以小于2 nm的微孔为主,同时含有少量的中孔和大孔。活化3.5 h样品的吸氢量最大,达到3.28wt%。研究发现,吸氢量受比表面积和孔容等参数影响较大,77 K下不仅小于2 nm的微孔对活性炭吸氢行为贡献较大,中孔也有十分重要的影响。样品经硝酸氧化处理后,BET比表面积和总孔容均在一定程度上减小,而氢气吸附量也有所降低。  相似文献   

11.
We report the synthesis of zeolite-like carbon materials that exhibit well-resolved powder XRD patterns and very high surface area. The zeolite-like carbons are prepared via chemical vapor deposition (CVD) at 800 or 850 degrees C using zeolite beta as solid template and acetonitrile as carbon precursor. The zeolite-like structural ordering of the carbon materials is indicated by powder XRD patterns with at least two well-resolved diffraction peaks and TEM images that reveal well-ordered micropore channels. The carbons possess surface area of up to 3200 m2/g and pore volume of up to 2.41 cm3/g. A significant proportion of the porosity in the carbons (up to 76% and 56% for surface area and pore volume, respectively) is from micropores. Both TEM and nitrogen sorption data indicate that porosity is dominated by pores of size 0.6-0.8 nm. The carbon materials exhibit enhanced (and reversible) hydrogen storage capacity, with measured uptake of up to 6.9 wt % and estimated maximum of 8.33 wt % at -196 degrees C and 20 bar. At 1 bar, hydrogen uptake capacity as high as 2.6 wt % is achieved. Isosteric heat of adsorption of 8.2 kJ/mol indicates a favorable interaction between hydrogen and the surface of the carbons. The hydrogen uptake capacity observed for the zeolite-like carbon materials is among the highest ever reported for carbon (activated carbon, mesoporous carbon, CNTs) or any other (MOFs, zeolites) porous material.  相似文献   

12.
A class of high-surface-area carbon hypothetical structures has been investigated that goes beyond the traditional model of parallel graphene sheets hosting layers of physisorbed hydrogen in slit-shaped pores of variable width. The investigation focuses on structures with locally planar units (unbounded or bounded fragments of graphene sheets), and variable ratios of in-plane to edge atoms. Adsorption of molecular hydrogen on these structures was studied by performing grand canonical Monte Carlo simulations with appropriately chosen adsorbent-adsorbate interaction potentials. The interaction models were tested by comparing simulated adsorption isotherms with experimental isotherms on a high-performance activated carbon with well-defined pore structure (approximately bimodal pore-size distribution), and remarkable agreement between computed and experimental isotherms was obtained, both for gravimetric excess adsorption and for gravimetric storage capacity. From this analysis and the simulations performed on the new structures, a rich spectrum of relationships between structural characteristics of carbons and ensuing hydrogen adsorption (structure-function relationships) emerges: (i) Storage capacities higher than in slit-shaped pores can be obtained by fragmentation/truncation of graphene sheets, which creates surface areas exceeding of 2600 m(2)/g, the maximum surface area for infinite graphene sheets, carried mainly by edge sites; we call the resulting structures open carbon frameworks (OCF). (ii) For OCFs with a ratio of in-plane to edge sites ≈1 and surface areas 3800-6500 m(2)/g, we found record maximum excess adsorption of 75-85 g of H(2)/kg of C at 77 K and record storage capacity of 100-260 g of H(2)/kg of C at 77 K and 100 bar. (iii) The adsorption in structures having large specific surface area built from small polycyclic aromatic hydrocarbons cannot be further increased because their energy of adsorption is low. (iv) Additional increase of hydrogen uptake could potentially be achieved by chemical substitution and/or intercalation of OCF structures, in order to increase the energy of adsorption. We conclude that OCF structures, if synthesized, will give hydrogen uptake at the level required for mobile applications. The conclusions define the physical limits of hydrogen adsorption in carbon-based porous structures.  相似文献   

13.
Four samples of active carbons with specific micropore volumes of 0.4—1.33 cm3g-1 at 77 K and pressures up to 5 MPa were used to study hydrogen adsorption. The highest amount of of hydrogen adsorbed on these active carbons at the boiling point 20.38 K and pressure 0.101 MPa was calculated by methods derived from the theory of volumetric filling of micropores (TVFM). The adsorbent FAS-1-05 prepared by the liquid-phase polymerization of furfurol was shown to have the highest adsorption capacity. The amounts of hydrogen adsorbed on FAS-1-05 at temperatures 77, 196, and 300 K and pressures 7 and 20 MPa were calculated using the TVFM methods with allowance for linearity of the isosters. The results were compared with the experimental values obtained at 77 K and pressure below 5.1 MPa and at 293 K and pressures up to 16.1 MPa. The highest amounts of hydrogen adsorbed (6.2 wt.% for the adsorbent FAS-1-05) were obtained under pressures below 5.1 MPa and at 77 K.  相似文献   

14.
研究活性炭在硫化氢存在条件下催化氧化脱除煤气中单质汞的吸附机理和探讨提高其吸附能力的方法,在模拟煤气气氛下对3种活性炭和一种活性焦进行汞的吸附性能实验,并进一步分析活性炭(焦)的孔隙结构。用BET方程处理N2等温吸附数据,计算比表面积;用HK法进行微孔分析;用BJH法计算中孔孔径分布。结果表明,硫化氢被催化氧化后,生成吸附在活性炭孔壁上的活性硫促进了对汞的吸附;随着活性炭微孔和中孔体积的增大,活性炭对汞的吸附能力得到提高。  相似文献   

15.
Dihydrogen adsorption at 77 K on a number of fine-particle carbon materials, activated carbons, and carbon nanotubes has been investigated. The micropore structure parameters of these materials have been determined using a volumetric comparative method and nonlocal density functional theory (NLDFT). These data processing methods lead to different values of textural parameters. This difference is attributed to the presence of specific sorption sites on the surface of real carbon materials. The pore size range in which the NLDFT method is applicable to the C-H2 system has been determined. A comparison between the hydrogen sorption properties of different carbon nanotubes is presented.  相似文献   

16.
多孔炭物理化学结构及其表征   总被引:3,自引:0,他引:3  
以碳为基本骨架的多孔炭因具有丰富的孔隙结构和表面化学宫能团,在吸附分离、催化、电子等领域应用广泛.在阐述多孔炭孔结构(物理结构)和表面化学宫能团(化学结构)基础上,重点介绍了透射电镜等可直接观察多孔炭孔结构的表征方法及Dubinin微孔充填理论、平均场密度泛函理论、吸附法、压汞法等表征多孔炭孔结构的主要理论及方法,以及...  相似文献   

17.
Ordered nanoporous carbons (ONCs) were prepared using a soft-templating method. To improve the CO2 adsorption efficiency, ONCs were chemically activated to obtain high specific surface area and micro-/mesopore volume with different KOH amounts (i.e., 0, 1, 2, 3, and 4) as an activating agent. The prepared nanoporous carbons (NCs) materials were analyzed by low-angle X-ray diffraction for confirmation of synthesized ONCs structures. The structural properties of the NCs materials were analyzed by high-angle X-ray diffraction. The textural properties of the NCs materials were examined using the N2/77 K adsorption isotherms according to the Brunauer–Emmett–Teller equation. The CO2 adsorption capacity was measured by CO2 isothermal adsorption at 298 K/1 bar. From the results, the NCs activated with KOH showed that the increasing specific surface areas and total pore volumes resulted in the enhancement of CO2 adsorption capacity.  相似文献   

18.
The adsorption isotherms of water at 303 K and N2 at 77 K on various kinds of porous carbons were compared with each other. The saturated amounts of water adsorbed on carbons almost coincided with amounts of N2 adsorption in micropores. Although carbon aerogel samples have mesopores of the great pore volume, the saturated amount of adsorbed water was close to the micropore volume which is much small than the mesopore volume. These adsorption data on carbon aerogels indicated that the water molecules are not adsorbed in mesopores, but in micropores only. The adsorption isotherms of water on activated carbon having micropores of smaller than 0.7 nm in width had no clear adsorption hysteresis, while the water adsorption isotherms on micropores of greater than 0.7 nm had a remarkable adsorption hysteresis above P/P0 = 0.5. The disappearance of the clear hysteresis for smaller micropores suggested that the cluster of water molecules of about 0.7 nm in size gives rise to the water adsorption on the hydrophobic micropores; the formation and the structure of clusters of water molecules were associated with the adsorption mechanism. The cluster-mediated pore filling mechanism was proposed with a special relevance to the evidence on the formation of the ordered water molecular assembly in the carbon micropores by in situ X-ray diffraction.  相似文献   

19.
Physically and chemically activated carbons were prepared from date pits and olive stones. Titania and WO(x)-TiO(2)/MCM-41 were prepared as photoactive catalysts. Surface characterizations were investigated from ash content, pH, base neutralization capacities and FT-IR techniques. The textural characteristics, namely specific surface area (S(BET)) and pore texture, were determined from low temperature adsorption of N(2) at 77 K. The decolorization of aqueous solution of methylene blue was performed by means of two alternative methods. Steam-activated carbons own higher surface area compared with ZnCl(2)-activated carbons, and the micropore surface area represents the major contribution of the total area. Steam-activated carbons were the most efficient decolorizing adsorbents owing to its higher surface area, total pore volume and the basic nature of the surface. The calculated values of DeltaG(0), DeltaH(0) and DeltaS(0) indicate the spontaneous behavior of adsorption. The photocatalytic degradation is more convenient method in decolorizing of methylene blue compared with the adsorption process onto activated carbons.  相似文献   

20.
In this work a series of commercial carbons with different structural and textural properties were characterised and evaluated for their application in hydrogen storage. The results showed that temperature has a greater influence on the storage capacity of carbons than pressure. The highest H2 storage capacity at 298 K and 90 bar was 0.5 wt%, while at 77 K and atmospheric pressure it was 2.9 wt%. It is also showed that, in order to predict the hydrogen storage capacity of carbon material both at cryogenic and ambient temperature, the only use of BET surface area or total micropore volume obtained from N2 adsorption isotherm may be insufficient, the characterization of the narrow microporosity is needed due to its high contribution to hydrogen adsorption capacity. The process involved in hydrogen storage in pure carbon materials seems to be physisorption. Morphological or structural characteristics have no influence, at least on gravimetric storage capacity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号