首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
Short-range interactions between surfactant and lipid layers are of great importance in technical applications in complex fluids such as foams, dispersions and emulsions, as well as in the formulation and performance of dispersants, detergents and flocculants. It is also of utmost importance in biological systems where interactions between biomembranes influence a range of processes. The field of short-range interactions has been thoroughly investigated during the past 30 years, following the emergence of a number of techniques to measure interaction forces. Thus, our understanding has increased considerably and it is timely to summarize relevant knowledge accumulated in this area. In this review we focus on the nature of short-range interactions between non-ionic and zwitterionic surfactant and lipid layers exposing their polar groups to the surrounding medium. We discuss the complex interplay of short-range (van der Waals, hydration, steric and other) forces based on recent theoretical and experimental results.  相似文献   

2.
In this quantum chemical study, we explore hydrogen bonding (H-bonding) and stacking interactions in different crystalline cellulose allomorphs; namely, cellulose I(β) and cellulose III(I). We consider a model system representing a cellulose crystalline core made from six cellobiose units arranged in three layers with two chains per layer. We calculate the contributions of intrasheet and intersheet interactions to the structure and stability in both cellulose I(β) and cellulose III(I) crystalline cores. Reference structures for this study were generated from molecular dynamics simulations of water-solvated cellulose I(β) and III(I) fibrils. A systematic analysis of various conformations describing different mutual orientations of cellobiose units is performed using the hybrid density functional theory with the M06-2X with 6-31+G(d,p) basis sets. We dissect the nature of the forces that stabilize the cellulose I(β) and cellulose III(I) crystalline cores and quantify the relative strength of H-bonding and stacking interactions. Our calculations demonstrate that individual H-bonding interactions are stronger in cellulose I(β) than in cellulose III(I); however, the total H-bonding contribution to stabilization is larger in cellulose III(I) because of the highly cooperative nature of the H-bonding network. In addition, we observe a significant contribution from cooperative stacking interactions to the stabilization of cellulose I(β). The theory of atoms-in-molecules (AIM) has been employed to characterize and quantify these intermolecular interactions. AIM analyses highlight the role of nonconventional CH···O H-bonding in the cellulose assemblies. Finally, we calculate molecular electrostatic potential maps for the cellulose allomorphs that capture the differences in chemical reactivity of the systems considered in our study.  相似文献   

3.
The pi-stacked interactions in some explosive crystal packing are discussed. Taking a typical pi-stacked explosive 2,4,6-trinitrobenzene-1,3,5-triamine (TATB) as a sample and using molecular simulations, we investigated the nature of the pi-stacked interactions versus the external mechanical stimuli causing possible slide and compression of explosives. As a result, between the neighbor layers in the TATB unit cell, the electrostatic attraction decreases with a little decrease of vdW attraction when its top layer slides, whereas the vdW attraction increases with a decrease of electrostatic attraction when TATB crystal is compressed along its c axis. Meanwhile, we studied the correlation between the pi-stacked structures and the impact sensitivities of explosives by means of three representatives including TATB with typical planar pi-stacked structures, 2,2-dinitroethylene-1,1-diamine (Fox-7) with wavelike pi-stacked structures, and 1,3,5,7-tetranitro-1,3,5,7-tetrazocane (HMX) without pi-stacked structure. The results showed that pi-stacked structures, particularly planar layers, can effectively buffer against external mechanical stimuli. That is, pi-stacked structures can partly convert the mechanical energy acting on them into their intermolecular interaction energy, to avoid the increase of the molecular vibration resulting in the explosive decomposition, the formation of hot spots, and the final detonation. This is another reason for the low mechanical sensitivity of pi-stacked explosives besides their stable conjugated molecular structures.  相似文献   

4.
The energy landscape picture of protein folding and binding is employed to optimize a number of pair potentials for direct and water-mediated interactions in protein complex interfaces. We find that water-mediated interactions greatly complement direct interactions in discriminating against various types of trap interactions that model those present in the cell. We highlight the context dependent nature of knowledge-based binding potentials, as contrasted with the situation for autonomous folding. By performing a Principal Component Analysis (PCA) of the corresponding interaction matrixes, we rationalize the strength of the recognition signal for each combination of the contact type and reference trap states using the differential in the idealized "canonical" amino acid compositions of native and trap layers. The comparison of direct and water-mediated contact potential matrixes emphasizes the importance of partial solvation in stabilizing charged groups in the protein interfaces. Specific water-mediated interresidue interactions are expected to influence significantly the kinetics as well as thermodynamics of protein association.  相似文献   

5.
The new BaTl(3) compound has been synthesized and characterized by physical property measurements and electronic structure calculations. Its structure (Cmcm) is a new intermediate in the Ni(3)Sn family (P6(3)/mmc), and consists of thallium layers formed from two-center bond formation between the parallel chains of face-sharing octahedral clusters. The valence electron concentration (VEC) of the thallium layers is consistent with their two-dimensional nature, in comparison with those in other AX(3)-type compounds with one- or three-dimensional anionic networks with the same building blocks and different VECs. The unique geometric features of the anionic thallium layers bring on an unusual competition between inter- and intracluster bonds. Detailed studies of the energetics of BaTl(3) reveal for the first time the important role of cation-anion interactions in the bonding competition in such an anionic substructure.  相似文献   

6.
Several new liquid-crystalline indene and pseudoazulene systems are reported. These molecules give rise to either columnar hexagonal mesophases and/or columnar plastic phases. The unique nature of these compounds stems from their non-classical discotic structure. Although the molecules have rigid aromatic cores, they lack terminal tails and instead the polarizable atoms (S, halogens) or polar groups (CN, CO) act as unusual soft parts. On the basis of many structurally related materials, we conclude that for this type of compound molecular stacking in the solid state is a prerequisite for the appearance of a columnar mesophase, although other intermolecular interactions within the layers are also important in establishing liquid-crystalline order. The behavior reported for these mesomorphic molecules opens up new possibilities in the search for related molecular interactions that might be useful for the construction of supramolecular architectures with particular properties.  相似文献   

7.
Polypeptides incorporating D-amino acids occasionally occur in nature and are an important class of pharmaceutical molecules. With the use of heterochiral Monte Carlo (HCMC), a method inspired by the de novo design of proteins, we develop peptide scaffolds for interacting with a molecular target, a left-handed alpha-helix. The HCMC approach concurrently seeks to optimize a peptide sequence, its internal conformation, and its docked conformation with a target surface. Several major classes of interactions are observed: (1) homochiral interactions between two alphaL helices, (2) heterochiral interactions between an alphaL and an alphaR helix, and (3) heterochiral interactions between the alphaL target and novel nonhelical structures. We explore the application of HCMC to simulating the preferential enantioselectivity of heterochiral complexes. Implications for biomimetic design in molecular recognition are discussed.  相似文献   

8.
Carbohydrates on host membranes are fundamental to many important biological processes. Here, we seek a basic understanding of the nature of the interactions between carbohydrates and phospholipids to dissect their roles in molecular recognition. A hybrid quantum mechanics/quantum mechanics (QM/QM) scheme with two different levels of treatment was used to explore the conformations and energetics of carbohydrate-phospholipid complexes. We investigate the interactions of two phospholipids (POPC and DOPC) with mannose using density functional theory. Carbohydrate-phospholipid interactions are probed with respect to competing interactions with water. Our hybrid QM/QM approach demonstrates that mannose interactions with phospholipids can result in alterations in charge distributions and conformations of phospholipids. The results clearly reveal the interplay between conventional and nonconventional hydrogen bonding; moreover, nonpolar interactions are shown to be crucial in the recognition and further stabilization of carbohydrate-phospholipid complexes. The influence of the acyl chain on phospholipid headgroup orientation is clearly evident in our investigation. The significance of the conventional OH···O and nonconventional CH···O and CH···C interactions in the stabilization of the intermolecular complexes is deduced from the molecular electron density topology using Bader's atoms-in-molecules theory. Finally, we have compared the QM energies with molecular mechanics energies for the same interactions to aid in the refinement of the all-atom lipid-carbohydrate force fields.  相似文献   

9.
The design of inhibitors of protein–protein interactions mediating amyloid self‐assembly is a major challenge mainly due to the dynamic nature of the involved structures and interfaces. Interactions of amyloidogenic polypeptides with other proteins are important modulators of self‐assembly. Here we present a hot‐segment‐linking approach to design a series of mimics of the IAPP cross‐amyloid interaction surface with Aβ (ISMs) as nanomolar inhibitors of amyloidogenesis and cytotoxicity of Aβ, IAPP, or both polypeptides. The nature of the linker determines ISM structure and inhibitory function including both potency and target selectivity. Importantly, ISMs effectively suppress both self‐ and cross‐seeded IAPP self‐assembly. Our results provide a novel class of highly potent peptide leads for targeting protein aggregation in Alzheimer’s disease, type 2 diabetes, or both diseases and a chemical approach to inhibit amyloid self‐assembly and pathogenic interactions of other proteins as well.  相似文献   

10.
11.
We report a steady-state theory for the evaluation of electrostatic interactions between identical or dissimilar spherical soft multi-layered (bio)particles, e.g. microgels or microorganisms. These generally consist of a rigid core surrounded by concentric ion-permeable layers that may differ in thickness, soft material density, chemical composition and degree of dissociation for the ionogenic groups. The formalism allows the account of diffuse interphases where distributions of ionogenic groups from one layer to the other are position-dependent. The model is valid for any number of ion-permeable layers around the core of the interacting soft particles and covers all limiting situations in terms of nature of interacting particles, i.e. homo- and hetero-interactions between hard, soft or entirely porous colloids. The theory is based on a rigorous numerical solution of the non-linearized Poisson-Boltzmann equation including radial and angular distortions of the electric field distribution within and outside the interacting soft particles in approach. The Gibbs energy of electrostatic interaction is obtained from a general expression derived following the method by Verwey and Overbeek based on appropriate electric double layer charging mechanisms. Original analytical solutions are provided here for cases where interaction takes place between soft multi-layered particles whose size and charge density are in line with Deryagin treatment and Debye-Hückel approximation. These situations include interactions between hard and soft particles, hard plate and soft particle or soft plate and soft particle. The flexibility of the formalism is highlighted by the discussion of few situations which clearly illustrate that electrostatic interaction between multi-layered particles may be partly or predominantly governed by potential distribution within the most internal layers. A major consequence is that both amplitude and sign of Gibbs electrostatic interaction energy may dramatically change depending on the interplay between characteristic Debye length, thickness of ion-permeable layers and their respective protolytic features (e.g. location, magnitude and sign of charge density). This formalism extends a recent model by Ohshima which is strictly limited to interaction between soft mono-shell particles within Deryagin and Debye-Hückel approximations under conditions where ionizable sites are completely dissociated.  相似文献   

12.
Simple analytical models are introduced that significantly enhance the ability to understand and rationalise the nature of bonding interactions depicted by domain-averaged Fermi hole (DAFH) analysis. The examples presented show that besides shedding new light on the role of electron-sharing in ordinary two-centre two-electron (2c-2e) chemical bonds that are well represented by the classical Lewis model, the proposed approach also provides interesting new insights into the nature of bonding interactions that go beyond the traditional Lewis paradigm. This is, for example, the case of 3c-2e multicentre bonding, but a straightforward extension of the approach also reveals for direct metal-metal bonding the existence of a completely new type of bonding interaction that involves the mutual exchange of electrons between the lone pairs on adjacent metal atoms.  相似文献   

13.
Inspired by the amino acid composition of natural protein surfaces, we developed a zwitterionic cloak containing multi-layers of short alternating glutamic acid and lysine (EK) peptides as a facile, highly effective and low-immunogenicity approach for the protection and delivery of biotherapeutics. Each EK layer grafted to proteins provides multiple times of new lysine reaction sites for the growth of subsequent EK layers. This unique design allows EK peptides to achieve high coating density on proteins, overcoming the limitation of traditional conjugation strategies that rely on the number of innate lysine groups. A triple-layer EK cloak manifests to successfully eliminate the specific and non-specific interactions of protected asparaginase with biological media while prolong the drug circulation time and significantly mitigate its immunogenicity in vivo, suggesting an EK peptide cloak as a promising approach to improve the safety and efficacy of biotherapeutics.  相似文献   

14.
Despite the success of DLVO theory, there exist numerous examples of interactions that do not follow its predictions. One prominent example is the interaction between hydrophilic surfaces in mixtures of water with another polar, associating solvent. Interactions of such surfaces are still poorly understood yet play a key role in a wide variety of processes in nature, biology, and industry. The interaction forces between a silica sphere and a glass plate in N-methyl-2-pyrrolidone (NMP)-water binary mixtures were measured using the AFM technique. The interactions in pure NMP and pure water agreed qualitatively with DLVO theory. In contrast, the addition of NMP to water drastically altered the interactions, which no longer followed DLVO predictions. An unusually strong, long-range (50-80 nm), multistepped attractive force was observed on the approach of hydrophilic surfaces in the NMP concentration range of 30-50 vol %, where the adhesive pull-off force was also maximized. The maximum attractive force was observed at an NMP concentration near 30 vol %, consistent with the formation of a strong hydrogen-bonded complex between NMP and water near the solid surface. The analysis of force profiles, zeta potentials, solution viscosity, and contact angles suggests that attraction arises from the bridging of surface-adsorbed macrocluster layers known to form on hydrophilic surfaces in mixtures of associating liquids.  相似文献   

15.
The processes of adsorption of grafted copolymers onto negatively charged surfaces were studied using a dissipative quartz crystal microbalance (D-QCM) and ellipsometry. The control parameters in the study of the adsorption are the existence or absence on the molecular architecture of grafted polyethyleneglycol (PEG) chains with different lengths and the chemical nature of the main chain, poly(allylamine) (PAH) or poly(L-lysine) (PLL). It was found out that the adsorption kinetics of the polymers showed a complex behavior. The total adsorbed amount depends on the architecture of the polymer chains (length of the PEG chains), on the polymer concentration and on the chemical nature of the main chain. The comparison of the thicknesses of the adsorbed layers obtained from D-QCM and from ellipsometry allowed calculation of the water content of the layers that is intimately related to the grafting length. The analysis of D-QCM results also provides information about the shear modulus of the layers, whose values have been found to be typical of a rubber-like polymer system. It is shown that the adsorption of polymers with a charged backbone is not driven exclusively by the electrostatic interactions, but the entropic contributions as a result of the trapping of water in the layer structure are of fundamental importance.  相似文献   

16.
Yeast two-hybrid (Y2H) screening is a powerful method to detect protein–protein interactions (PPI) at the genomic-scale. A recently proposed framework for binary interactome mapping recommends the repeated screening approach to improve the quality of PPI data. Such repeated screening reveals Y2H interactions ranging from highly sampled to singleton interactions. The quality and the biological significance of interactions from distinguished sampling classes remain unknown. In order to systematically characterize such interactions, we have chosen a dataset of 1,262 interactions that were screened repeatedly four-times. The interactions were classified as highly sampled, weakly sampled, and singleton interactions. We assessed the quality of interactions in different sampling classes using features such as protein structural properties, conservation in yeast and presence of known domain–domain interactions that are previously associated with false positive rates. Our analysis reveals that the quality of singleton interactions is comparable to that of highly sampled interactions. Interestingly, singletons encompass a higher fraction of known domain–domain interactions than highly sampled ones. Furthermore, we observed that the singleton interactions are transient in nature, while the highly sampled interactions are predominantly part of stable complexes. Hence, the repeated Y2H screening method is ideal for detecting transient PPIs that are crucial in cellular signaling pathways.  相似文献   

17.
Working at the macroscopic continuum level, we investigate effective van der Waals interactions between two layers within a multilayer assembly. By comparing the pair interactions between two layers with effective pair interactions within an assembly we assess the significant consequences of nonadditivity of van der Waals interactions. This allows us to evaluate the best numerical estimate to date for the Hamaker coefficient of van der Waals interactions in lipid-water multilamellar systems.  相似文献   

18.
Fibrin, the biopolymer produced in the final step of the coagulation cascade, is involved in the resistance of arterial thrombi to fragmentation under shear flow. However, the nature and strength of specific interactions between fibrin monomers are unknown. Thus, the shear-induced detachment of spherical monodispersed fibrin-coated latex particles in adhesive contact with a plane fibrin-coated glass surface has been experimentally studied, using an especially designed shear stress flow chamber. A complete series of experiments for measuring the shear stress necessary to release individual particles under various conditions (various number of fibrin layers involved in the adhesive contact, absence or presence of plasmin, the main physiological fibrinolytic enzyme) has been performed. The nonspecific DLVO interactions have been shown to be negligible compared to the interactions between fibrin monomers. A simple adhesion model based on the balance of forces and torque on particles, assuming an elastic behavior of the fibrin polymer bonds, to analyze the experimental data in terms of elastic force at rupture of an elementary intermonomeric fibrin bond has been used. The results suggested that this force (of order 400 pN) is an intrinsic quantity, independent of the number of fibrin layers involved in the adhesive contact. Copyright 2001 Academic Press.  相似文献   

19.
We are interested here in the reactivity of magnetic nanoparticles at the electrode-electrolyte interface with the aim of the electrochemical synthesis of magnetic and conductive liquids (electronic conduction). The reactivity of charged colloidal particles occurs through a two steps process, the first being the approach toward the electrode with a possible adsorption phenomenon and the second step, the electron transfer. In this first paper we focus on the approach and the deposition of well-defined gamma-Fe(2)O(3) nanoparticles onto conductive substrates like mercury and gold under different conditions in order to vary the interactions particle/substrate especially the electrostatic interactions. The approach of the particles near the electrodes is estimated from the electrochemical currents related to the transformation of the particles. This electrochemical method is validated by coupling several techniques on gold electrodes: direct imaging by atomic force microscopy and study of kinetics by reflectometry. The results show that the electrochemical currents are always associated to adsorption of the particles, so that the electrochemical method can be used to estimate the adsorption of the particles, thus to follow the kinetics. The influence of the electrostatics on the occurrence of adsorption highly depends on the nature of the substrate and on the nature of the colloidal suspension. (ions, pH, ionic strength): whereas electrostatics governs the deposits in some cases, it is totally dominated by other interactions in other cases. Therefore, it seems difficult to predict a priori the existence of adsorption. However, when a deposit occurs, the kinetics and the maximal coverage of the substrates are controlled by the electrostatic interactions between the particles already adsorbed and those, close to the interface, in the bulk of the solution.  相似文献   

20.
Employing the colloidal probe AFM technique we have investigated normal and friction forces between flat mica surfaces and silica particles coated with mucin and combined mucin-chitosan layers in presence and absence of anionic surfactant, SDS, in 30 mM NaCl solution. We have shown that the normal interactions between mucin coated mica and silica surfaces are dominated by long-range steric repulsion on both compression and decompression. Friction forces between such mucin layers are characterized by a low effective friction coefficient, mu(eff)=0.03+/-0.02, which is lower than the value of 0.13+/-0.02 observed when chitosan layers were adsorbed. Forces between combined mucin-chitosan layers have also been measured. Adsorption of chitosan on mucin results in considerable compaction of the layer, and development of attractive forces detectable on separation. Friction between mucin-chitosan layers in 30 mM NaCl solution is high, with mu(eff) approximately 0.4. Adsorption of additional mucin to this layer results in no improvement with respect to lubrication as compared to the mucin-chitosan layer, and mu(eff) approximately 0.4 is observed. We argue that the layers containing both mucin and chitosan are not strictly layered but rather strongly entangled. As a result attractive interactions between oppositely charged moieties of sialic acid residues from mucin and amine groups from chitosan residing on the opposing surfaces contribute to the increased friction. The effects of SDS on normal and friction forces between combined mucin-chitosan layers were also investigated. The relation between surface interactions and friction properties is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号