首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 620 毫秒
1.
Exposure to 4-aminobiphenyl (4-ABP), an environmental and tobacco smoke carcinogen that targets the bladder urothelium, leads to DNA adduct formation and cancer development [1]. Two major analytical challenges in DNA adduct analysis of human samples have been limited sample availability and the need to reach detection limits approaching the part-per-billion threshold. By operating at nano-flow rates and incorporating a capillary analytical column in addition to an online sample enrichment step, we have developed a sensitive and quantitative HPLC–MS/MS method appropriate for the analysis of such samples. This assay for the deoxyguanosine adduct of 4-ABP (dG-C8-4-ABP) gave mass detection limits of 20 amol in 1.25 μg of DNA (5 adducts in 109 nucleosides) with a linear range of 70 amol to 70 fmol. 4-ABP-exposed human bladder cells and rat bladder tissue were analyzed in triplicate, and higher dose concentrations led to increased numbers of detected adducts. It was subsequently established that sample requirements could be further reduced to 1 μg digestions and the equivalent of 250 ng DNA per injection for the detection of low levels of dG-C8-4-ABP in a matrix of exfoliated human urothelial cell DNA. This method is appropriate for the characterization and quantification of DNA adducts in human samples and can lead to a greater understanding of their role in carcinogenesis and also facilitate evaluation of chemopreventive agents.  相似文献   

2.
Cigarette smoke contains ethylating agents which damage DNA producing ethylated DNA adducts, such as N3-ethyladenine (3-EtAde), N7-ethylguanine (7-EtGua), and regioisomers of ethylthymine. Among them, 3-EtAde and 7-EtGua are present in human urine and their levels are higher in smokers than in nonsmokers. The amount of ethylated DNA adducts in tissue DNA represents the steady-state levels of DNA adducts resulting from the ethylating agent after repair in vivo. In this study, we have developed a highly sensitive, accurate, and quantitative assay for simultaneous detection and quantification of 3-EtAde and 7-EtGua by stable isotope dilution capillary liquid chromatography–nanospray ionization tandem mass spectrometry (capLC–NSI/MS/MS). Under the highly selective reaction monitoring (H-SRM) mode, the detection limit of 3-EtAde and 7-EtGua injected on-column was 5.0 fg (31 amol) and 10 fg (56 amol), respectively. The quantification limit for the entire assay was 50 and 100 fg of 3-EtAde and 7-EtGua, corresponding to 4.7 and 8.6 adducts in 109 normal nucleotides, respectively, starting with 20 μg of DNA isolated from <1 mL of blood and injecting an equivalent of 4 μg of DNA on-column. The mean (±SD) levels of 3-EtAde and 7-EtGua in leukocyte DNA from 20 smokers were 16.0 ± 7.8 and 9.7 ± 8.3 in 108 normal nucleotides, respectively, which were statistically significantly higher than those of 5.4 ± 2.6 3-EtAde and 0.3 ± 0.8 7-EtGua in 108 normal nucleotides from 20 nonsmokers (p < 0.0001). The levels of 3-EtAde and 7-EtGua in these 40 leukocyte DNA samples are positively correlated (γ = 0.6970, p < 0.0001). Furthermore, there are statistically significant associations between the number of cigarettes smoked per day, as well as the smoking index, and the levels of 3-EtAde and 7-EtGua. Levels of 3-EtAde and 7-EtGua are compared to those of ethylthymidine adducts. To our knowledge, this is the first assay for simultaneous quantification of 3-EtAde and 7-EtGua in the same DNA sample and is the first report of 3-EtAde in human DNA. This highly sensitive and specific stable isotope dilution capLC–NSI/MS/MS assay should be useful in measuring 3-EtAde and 7-EtGua in human leukocyte DNA as potential biomarkers for smoking-related cancers.  相似文献   

3.
We studied the thermodynamic properties, conformation, and recognition of DNA duplexes site‐specifically modified by monofunctional adducts of RuII complexes of the type [RuII(η6‐arene)(Cl)(en)]+, in which arene=para‐, meta‐, or ortho‐terphenyl (complexes 1 , 2 , and 3 , respectively) and en=1,2‐diaminoethane. It has been shown (J. Med. Chem. 2008 , 51, 5310) that 1 exhibits promising cytotoxic effects in human tumor cells, whereas 2 and 3 are much less cytotoxic; concomitantly with the high cytotoxicity of 1 , its DNA binding mode involves combined intercalative and monofunctional (coordination) binding modes, whereas less cytotoxic compounds 2 and 3 bind to DNA only through a monofunctional coordination to DNA bases. An analysis of conformational distortions induced in DNA by adducts of 1 and 2 revealed more extensive and stronger distortion and concomitantly greater thermodynamic destabilization of DNA by the adducts of nonintercalating 2 . Moreover, affinity of replication protein A to the DNA duplex containing adduct of 1 was pronouncedly lower than to the adduct of 2 . On the other hand, another damaged‐DNA‐binding protein, xeroderma pigmentosum protein A, did not recognize the DNA adduct of 1 or 2 . Importantly, the adducts of 1 induced a considerably lower level of repair synthesis than the adducts of 2 , which suggests enhanced persistence of the adducts of the more potent and intercalating 1 in comparison with the adducts of the less potent and nonintercalating 2 . Also interestingly, the adducts of 1 inhibited DNA polymerization more efficiently than the adducts of 2 , and they could also be bypassed by DNA polymerases with greater difficulty. Results of the present work along with those previously published support the view that monodentate RuII arene complexes belong to a class of anticancer agents for which structure–pharmacological relationships might be correlated with their DNA‐binding modes.  相似文献   

4.
Sensitive and reliable methods are required for the assessment of oxidative DNA damage, which can result from reactive oxygen species that are generated endogenously from cellular metabolism and inflammatory responses, or by exposure to exogenous agents. The development of a liquid chromatography/tandem mass spectrometry (LC/MS/MS) selected reaction monitoring (SRM) method is described, that utilises online column‐switching valve technology for the simultaneous determination of two DNA adduct biomarkers of oxidative stress, 8‐oxo‐7,8‐dihydro‐2′‐deoxyguanosine (8‐oxodG) and 8‐oxo‐7,8‐dihydro‐2′‐deoxyadenosine (8‐oxodA). To allow for the accurate quantitation of both adducts the corresponding [15N5]‐labelled stable isotope internal standards were synthesised and added prior to enzymatic hydrolysis of the DNA samples to 2′‐deoxynucleosides. The method required between 10 and 40 µg of hydrolysed DNA on‐column for the analysis and the limit of detection for both 8‐oxodG and 8‐oxodA was 5 fmol. The analysis of calf thymus DNA treated in vitro with methylene blue (ranging from 5 to 200 µM) plus light showed a dose‐dependent increase in the levels of both 8‐oxodG and 8‐oxodA. The level of 8‐oxodG was on average 29.4‐fold higher than that of 8‐oxodA and an excellent linear correlation (r = 0.999) was observed between the two adducts. The influence of different DNA extraction procedures for 8‐oxodG and 8‐oxodA levels was assessed in DNA extracted from rat livers following dosing with carbon tetrachloride. The levels of 8‐oxodG and 8‐oxodA were on average 2.9 (p = 0.018) and 1.4 (p = 0.018) times higher, respectively, in DNA samples extracted using an anion‐exchange column procedure than in samples extracted using a chaotropic procedure, implying artefactual generation of the two adducts. In conclusion, the online column‐switching LC/MS/MS SRM method provides the advantages of increased sample throughput with reduced matrix effects and concomitant ionisation suppression, making the method ideally suited when used in conjunction with chaotropic DNA extraction for the determination of oxidative DNA damage. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

5.
Trace metal analysis has been long regarded as one of the principle tasks in areas of chemical analysis. At the early stage of instrumental development, total concentration was assessed in a variety of samples, yielding results, among others, for environmental, biological, and clinical samples. With the power of newer analytical techniques, such as inductively coupled plasma mass spectrometry (ICP-MS), accurate quantitative results can now be obtained at ultra-trace levels not only for metals, but also for metalloids and several non-metals. Even though the importance of trace elements in many biological processes is widely accepted, the elucidation of their biological pathways, understanding specific biological functions, or possible toxicological aspects is still a challenge and a driving force to further develop analytical methodology. Over the past decades, the scientific interest has moved from total element determination to include speciation analysis, which provides quantitative information of one or more individual element species in a sample. More recently, metallomics has been introduced as a more expanded concept, in which the global role of all metal/metalloids in a given system is considered. Owing to the multi-elemental focus of metallomics research, the use of ICP-MS becomes indispensable. Furthermore, considering the biological role of metals/metalloids and the use of elements as internal or external molecular tags, epigenetics should be considered as an important emerging application for metallomics studies and approaches. Among a variety of epigenetic factors, essential nutrients, but also environmental toxins, have been shown to affect DNA methylation, modification of histone proteins, and RNA interference, all of them being implicated in cancer, cardiovascular disease, and several inherited conditions. Recent studies suggest that epigenetics may be a critical pathway by which metals produce health effects. In this Trends article, the basic epigenetic concepts are introduced, followed by the early applications of ICP-MS classified as: (i) detection of 31P as a natural element tag for DNA, (ii) analysis of DNA adducts with metal-based drugs, (iii) element species as epigenetic factors.  相似文献   

6.
汪海林  章大鹏  王智鑫  李涛  冯峰  王超  高海燕 《色谱》2009,27(5):642-647
DNA加合物是一类重要的生物标志物,可应用于人体致癌物暴露监测、癌症风险评价和人群易感性研究。DNA加合物作为生物标志物的应用需要安全、灵敏、快速的先进分析技术。我们利用免疫毛细管电泳-激光诱导荧光分析,发展了高灵敏的DNA加合物分析方法和技术。本文主要介绍了相关的仪器研制及方法学研究。方法学研究涉及DNA加合物荧光探针的合成和表征、抗体与DNA加合物的相互作用及其结合计量学、抗原-抗体复合物的稳定化和DNA驱动电泳聚焦技术。  相似文献   

7.
Exposure of DNA to endo- and exogenous DNA binding chemicals can result in the formation of DNA adducts and is believed to be the first step in chemically induced carcinogenesis. DNA adductomics is a relatively new field of research which studies the formation of known and unknown DNA adducts in DNA due to exposure to genotoxic chemicals. In this study, a new UHPLC-HRMS(/MS)-based DNA adduct detection method was developed and validated. Four targeted DNA adducts, which all have been linked to dietary genotoxicity, were included in the described method; O6-methylguanine (O6-MeG), O6-carboxymethylguanine (O6-CMG), pyrimidopurinone (M1G) and methylhydroxypropanoguanine (CroG). As a supplementary tool for DNA adductomics, a DNA adduct database, which currently contains 123 different diet-related DNA adducts, was constructed. By means of the newly developed method and database, all 4 targeted DNA adducts and 32 untargeted DNA adducts could be detected in different DNA samples. The obtained results clearly demonstrate the merit of the described method for both targeted and untargeted DNA adduct detection in vitro and in vivo, whilst the diet-related DNA adduct database can distinctly facilitate data interpretation.  相似文献   

8.
Drugs can be metabolically activated to soft and hard electrophiles, which are readily trapped by glutathione (GSH) and cyanide (CN), respectively. These adducts are often detected and structurally characterized using separate tandem mass spectrometry methods. We describe a new method for simultaneous screening of GSH and CN adducts using precursor ion (PI) and neutral loss (NL) scans-dependent product ion spectral acquisition and data mining tools on an triple quadrupole linear ion trap mass spectrometry. GSH, potassium cyanide, and their stable isotope labeled analogues were incubated with liver microsomes and a test compound. Negative PI scan of m/z 272 for detection of GSH adducts and positive NL scans of 27 and 29 Da for detection of CN adducts were conducted as survey scans to trigger acquisition of enhanced resolution (ER) spectrum and subsequent enhanced product ion (EPI) spectrum. Post-acquisition data mining of EPI data set using NL filters of 129 and 27 Da was then performed to reveal the GSH adducts and CN adducts, respectively. Isotope patterns and EPI spectra of the detected adducts were utilized for identification of their molecular weights and structures. The effectiveness of this method was evaluated by analyzing reactive metabolites of nefazodone formed from rat liver microsomes. In addition to known GSH- and CN-trapped reactive metabolites, several new CN adducts of nefazodone were identified. The results suggested that current approach is highly effective in the analysis of both soft and hard reactive metabolites and can be used as a high-throughput method in drug discovery.  相似文献   

9.
Catechol estrogen-derived DNA adducts are formed as a result of the reaction of catechol estrogen metabolites (e.g., catechol estrogen quinones) with DNA to form depurinating adducts. Developing a new methodology for the detection of various DNA adducts is essential for medical diagnostics, and to this end, we demonstrate the applicability of on-chip capillary electrophoresis with an integrated electrochemical system for the separation and amperometric detection of various catechol estrogen-derived DNA adducts. A hybrid PDMS/glass microchip with in-channel amperometric detection interfaced with in situ palladium decoupler is utilized and presented. The influence of buffer additives along with the effect of the separation voltage on the resolving power of the microchip is discussed. Calibration plots were constructed in the range 0.4–10 μM with r 2 ≥ 0.999, and detection limits in the attomole range are reported. These results suggest that on-chip analysis is applicable for analyzing various DNA adducts as potential biomarkers for future medical diagnostics.  相似文献   

10.
Human toxic responses are very often related to metabolism. Liver metabolism is traditionally studied, but other organs also convert chemicals and drugs to reactive metabolites leading to toxicity. When DNA damage is found, the effects are termed genotoxic. Here we describe a comprehensive new approach to evaluate chemical genotoxicity pathways from metabolites formed in situ by a broad spectrum of liver, lung, kidney and intestinal enzymes. DNA damage rates are measured with a microfluidic array featuring a 64-nanowell chip to facilitate fabrication of films of DNA, electrochemiluminescent (ECL) detection polymer [Ru(bpy)2(PVP)10]2+ {(PVP = poly(4-vinylpyridine))} and metabolic enzymes. First, multiple enzyme reactions are run on test compounds using the array, then ECL light related to the resulting DNA damage is measured. A companion method next facilitates reaction of target compounds with DNA/enzyme-coated magnetic beads in 96 well plates, after which DNA is hydrolyzed and nucleobase-metabolite adducts are detected by LC-MS/MS. The same organ enzymes are used as in the arrays. Outcomes revealed nucleobase adducts from DNA damage, enzymes responsible for reactive metabolites (e.g. cyt P450s), influence of bioconjugation, relative dynamics of enzymes suites from different organs, and pathways of possible genotoxic chemistry. Correlations between DNA damage rates from the cell-free array and organ-specific cell-based DNA damage were found. Results illustrate the power of the combined DNA/enzyme microarray/LC-MS/MS approach to efficiently explore a broad spectrum of organ-specific metabolic genotoxic pathways for drugs and environmental chemicals.  相似文献   

11.
Metabolic activation of the human carcinogen 1,3-butadiene (BD) by cytochrome 450 monooxygenases gives rise to a genotoxic diepoxide, 1,2,3,4-diepoxybutane (DEB). This reactive electrophile alkylates guanine bases in DNA to produce N7-(2-hydroxy-3,4-epoxy-1-yl)-dG (N7-DE-dG) adducts. Because of the positive charge at the N7 position of the purine heterocycle, N7-DEB-dG adducts are inherently unstable and can undergo spontaneous depurination or base-catalyzed imidazole ring opening to give N6-[2-deoxy-D-erythro-pentofuranosyl]-2,6-diamino-3,4-dihydro-4-oxo-5-N-1-(oxiran-2-yl)propan-1-ol-formamidopyrimidine (DEB-FAPy-dG) adducts. Here we report the first synthesis and structural characterization of DEB-FAPy-dG adducts. Authentic standards of DEB-FAPy-dG and its 15N3-labeled analogue were used for the development of a quantitative nanoLC-ESI+-HRMS/MS method, allowing for adduct detection in DEB-treated calf thymus DNA. DEB-FAPy-dG formation in DNA was dependent on DEB concentration and pH, with higher numbers observed under alkaline conditions.  相似文献   

12.
Human exposure to polycyclic aromatic hydrocarbons (PAHs) from sources such as industrial or urban air pollution, tobacco smoke and cooked food is not confined to a single compound, but instead to mixtures of different PAHs. The interaction of different PAHs may lead to additive, synergistic or antagonistic effects in terms of DNA adduct formation and carcinogenic activity resulting from changes in metabolic activation to reactive intermediates and DNA repair. The development of a targeted DNA adductomic approach using liquid chromatography/tandem mass spectrometry (LC/MS/MS) incorporating software‐based peak picking and integration for the assessment of exposure to mixtures of PAHs is described. For method development PAH‐modified DNA samples were obtained by reaction of the anti‐dihydrodiol epoxide metabolites of benzo[a]pyrene, benzo[b]fluoranthene, dibenzo[a,l]pyrene (DB[a,l]P) and dibenz[a,h]anthracene with calf thymus DNA in vitro and enzymatically hydrolysed to 2′‐deoxynucleosides. Positive LC/electrospray ionisation (ESI)‐MS/MS collision‐induced dissociation product ion spectra data showed that the majority of adducts displayed a common fragmentation for the neutral loss of 116 u (2′‐deoxyribose) resulting in a major product ion derived from the adducted base. The exception was the DB[a,l]P dihydrodiol epoxide adduct of 2′‐deoxyadenosine which resulted in major product ions derived from the PAH moiety being detected. Specific detection of mixtures of PAH‐adducted 2′‐deoxynucleosides was achieved using online column‐switching LC/MS/MS in conjunction with selected reaction monitoring (SRM) of the [M+H]+ to [M+H–116]+ transition plus product ions derived from the PAH moiety for improved sensitivity of detection and a comparison was made to detection by constant neutral loss scanning. In conclusion, different PAH DNA adducts were detected by employing SRM [M+H–116]+ transitions or constant neutral loss scanning. However, for improved sensitivity of detection optimised SRM transitions relating to the PAH moiety product ions are required for certain PAH DNA adducts for the development of targeted DNA adductomic methods. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
The antitumoral effect of cisplatin [cis-diamminodichloroplatinum(II)] in mammals is related to its binding to DNA components. However, there is a lack of specific chemical methods to selectively detect those adducts formed in vivo at low concentrations. In this work, a new sensitive and selective method of determining cisplatin–DNA adducts based on the use of element-selective mass spectrometry is proposed, and the method is then applied to detect cisplatin adducts induced in vivo in somatic cells of Drosophila melanogaster. The bioanalytical strategy proposed here allows the determination of the most important DNA adduct formed between adjacent guanine units of the same DNA strand with cisplatin, and it is based on the coupling of capillary liquid chromatography (cap-LC) to inductively coupled plasma mass spectrometry (ICP-MS). This set-up allows the simultaneous monitoring of the Pt (from the drug) and P (from the DNA components) present in these adducts, once they have been cleaved by enzymatic hydrolysis of the DNA samples. Using this instrumental set-up, the adducts of cisplatin formed in vivo when D. melanogaster flies are exposed to different cisplatin concentrations can be detected and their concentration determined. The results obtained show a direct correlation between the concentration of cisplatin adducts, the induced genotoxic damage (measured as DNA strand breaks using the Comet assay) and the cisplatin concentration. Figure The work illustrates the complementary use of bioanalytical and biological information to study cisplatin interactions with DNA is vivo at biologically relevant concentrations of the drug  相似文献   

14.
Platinum (Pt)–DNA adducts formed by the anti-tumor agent cisplatin are recognized by the DNA mismatch repair (MMR) system. To investigate the involvement of MMR proteins including hMLH1 in the removal of these adducts, we developed a mL-scale wet-digestion method for inductively coupled plasma mass spectrometry (ICP-MS). The detection limit was 0.01 ng mL–1 Pt, which corresponded to 2 pg Pt/g DNA when 10 g of DNA was used. The mean relative errors were 5.4% or better for a dynamic range of 0.01–10 ng mL–1 Pt. DNA (~500 g) had no matrix effect. To improve the accuracy, DNA preparations were treated with ribonuclease and the apparent reduction in the concentration of Pt was corrected using cellular DNA levels, which were determined with Hoechst 33258. No significant differences were observed, in terms of the formation of Pt–DNA adducts or their removal over 6 h, between hMLH1-deficient HCT116 cells, a human colorectal cancer cell line, and hMLH1-complemented HCT116+ch3 cells (n=5; P>0.05), indicating that the hMLH1-dependent DNA repair systems contribute to neither the formation nor the removal of the adducts at detectable levels. In addition, approximately 19% of the adducts were removed within 6 h in both cell lines. A time course analysis (~24 h) suggested that the removal of cisplatin-generated Pt–DNA adducts follows first-order kinetics (t1/2=32 h). The amount of Pt–DNA adduct formed by oxaliplatin in 1 h was 56% (ratio of means) of that generated by an equimolar concentration of cisplatin in HCT116. The proposed procedure could be useful for determining Pt–DNA adducts formed by Pt(II) complexes.  相似文献   

15.
Stable-isotope trapping combined with mass spectrometry (MS) neutral loss scanning has recently been developed as a high-throughput method for the in vitro screening of major reactive metabolites. In fact, detection and identification of minor reactive metabolites are equally important since the minor metabolites, even though at low levels, may be highly reactive and also play an important role in drug-induced adverse reactions. In this study, 2-acetylthiophene, clozapine, troglitazone and 7-methylindole were selected as model compounds to further validate the advantages of this method for rapid detection and structural characterization of minor glutathione (GSH) adducts derived from reactive metabolites. The utility of the current method was clearly demonstrated by successful identification of novel reactive metabolites at low levels and also minor ones either masked by non-specific responses or co-eluted with other conjugates. In comparison with existing methods, this method is sensitive, efficient, and suitable for rapid screening and more complete profiling of reactive metabolites.  相似文献   

16.
Human DNA is exposed to a variety of endogenous and environmental agents that may induce a wide range of damage. The critical role of DNA damage in cancer development makes it essential to develop highly sensitive and specific assays for DNA lesions. We describe here ultrasensitive assays for DNA damage, which incorporate immuno-affinity with capillary electrophoresis (CE) separation and laser induced fluorescence (LIF) detection. Both competitive and non-competitive assays using CE/LIF were developed for the determination of DNA adducts of benzo[a]pyrene diol epoxide (BPDE). A fluorescently labeled oligonucleotide containing a single BPDE adduct was synthesized and used as a fluorescent probe for competitive assay. Binding between this synthetic oligonucleotide and a monoclonal antibody (MAb) showed both 1:1 and 1:2 complexes between the MAb and the oligonucleotide. The 1:1 and 1:2 complexes were separated by CE and detected with LIF, revealing binding stoichiometry information consistent with the bidentate nature of the immunoglobulin G antibody. For non-competitive assay, a fluorescently labeled secondary antibody fragment F(ab′)2 was used as an affinity probe to recognize a primary antibody that was specific for the BPDE-DNA adducts. The ternary complex of BPDE-DNA adducts with the bound antibodies was separated from the unbound antibodies using CE and detected with LIF for quantitation of the DNA adducts. The assay was used for the determination of trace levels of BPDE-DNA adducts in human cells. Analysis of cellular DNA from A549 human lung carcinoma cells that were incubated with low doses of BPDE (32 nM–1 μM) showed a clear dose–response relationship. BPDE is a potent environmental carcinogen, and the ultrasensitive assays for BPDE-DNA adducts are potentially useful for monitoring human exposure to this carcinogen and for studying cellular repair of DNA damage.  相似文献   

17.
Identification and quantitation of covalent carcinogen-DNA adducts, an important class of biomarkers, is an integral goal in toxicological research. Since these adducts are commonly present at very low levels in in vivo samples, sensitive and specific analytical methodologies are imperative for accurate detection, characterization and quantitation. High-performance separations coupled to electrospray mass spectrometry (ESI-MS) provide the sensitivity and specificity required for the analysis of DNA adducts. This review provides an overview over the research conducted in this area, focusing on the application of HPLC-ESI-MS and CE-ESI-MS techniques for structural analysis and quantitation of modified nucleosides, nucleotides and oligonucleotides.  相似文献   

18.
Exposure of cells to phenolic compounds through exogenous and endogenous sources can lead to deleterious effects via nucleobase modifications of DNA occurring under oxidative conditions. 2'-Deoxyguanosine (dG) is the most electron rich of the four canonical bases and includes many nucleophilic sites; it is also susceptible to oxidation with numerous reactive oxygen species. In these studies, dG was allowed to react with 2-naphthol in the presence of copper or iron salts yielding two principal isomeric products. Spectroscopic analysis and reactions with alkylated nucleosides support the assignment of compound 1a/1b as a pair of atropisomer N(2) adducts and compound 2a/2b as a diastereomeric mixture of tricyclic [4.3.3.0] adducts. Both products are the result of an overall four-electron oxidation process and consequently have the same masses, though drastically different structures, providing mechanistic insight into their formation. Thus, dG alkylation by 2-naphthol under oxidative conditions yields products whose structural properties are altered, leading to potentially mutagenic effects in genomic DNA.  相似文献   

19.
The reaction of styrene oxide, a potential carcinogen in humans, with DNA constituents has been used to develop an improved method for quantification of DNA adducts. To enable monitoring of DNA adducts caused by xenobiotics at physiological relevant levels, a robust, reliable and powerful method based on monitoring of phosphorus in nucleotides is described. An efficient enzymatic digestion step and a sample-preconcentration procedure are essential, and enable separation of alkylated nucleotides from the large excess of native nucleotides. The adducts are detected by means of the phosphorus signal measured at mass m/z=31 with an inductively-coupled-plasma mass spectrometer. Bis(4-nitrophenyl)phosphate (BNPP) serves as internal standard for quantification of the adducts. The absolute limit of detection, 45 fmol, corresponds to detection of three modified nucleotides among 107 native nucleotides (the calculation is based on use of 50 g calf thymus DNA). An adduct formation ratio at the DNA of 3.6 adducts per 1000 nucleotides was measured, which is 75% lower than for reaction with monomeric 2-deoxy-nucleotides. In addition, a substantial amount of phosphate adducts were detected, but in DNA the rate of phosphate formation was lower than with monomeric nucleotides. Most probably these adducts escaped unnoticed when 31P-post-labelling was employed.  相似文献   

20.
Reactive metabolites are believed to be one of the main reasons for unexpected drug‐induced toxicity issues, by forming covalent adducts with cell proteins or DNA. Due to their high reactivity and short lifespan they are not directly detected by traditional analytical methods, but are most traditionally analyzed by liquid chromatography/tandem mass spectrometry (LC/MS/MS) after chemical trapping with nucleophilic agents such as glutathione. Here, a simple but very efficient assay was built up for screening reactive drug metabolites, utilizing stable isotope labeled glutathione, potassium cyanide and semicarbazide as trapping agents and highly sensitive ultra‐performance liquid chromatography/time‐of‐flight mass spectrometry (UPLC/TOFMS) as an analytical tool. A group of twelve structurally different compounds was used as a test set, and a large number of trapped metabolites were detected for most of them, including many conjugates not reported previously. Glutathione‐trapped metabolites were detected for nine of the twelve test compounds, whereas cyanide‐trapped metabolites were found for eight and semicarbazide‐trapped for three test compounds. The high mass accuracy of TOFMS provided unambiguous identification of change in molecular formula by formation of a reactive metabolite. In addition, use of a mass defect filter was found to be a usable tool when mining the trapped conjugates from the acquired data. The approach was shown to provide superior detection sensitivity in comparison to traditional methods based on neutral loss or precursor ion scanning with a triple quadrupole mass spectrometer, and clearly more efficient detection and characterization of reactive drug metabolites with a simpler test setup. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号