首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Theory of spin fluctuations for itinerant magnetism and its application to high temperature superconductivity are reviewed. After a brief introduction to the whole subject the developments of the self-consistent renormalization theory of spin fluctuations are summarized with particular emphasis on critical properties at the quantum phase transitions. Most of the anomalous properties in the normal state of high-Tc cuprates are understood as due to the critical behaviours for the two dimensional antiferromagnetic metals. By analysing the nuclear magnetic relaxation rate and the T-linear term of resistivity, the set of parameters to specify the spin fluctuations are determined. It is shown that by using the parameters thus obtained one can describe other quantities as well, e.g. optical conductivity. Then we proceed to the theory of superconductivity by the spin fluctuation mechanism. After some discussion on the weak coupling treatments, the strong coupling theory is reviewed. It is shown that the set of parameters determined by the normal state properties of the high-T c cuprates just give a transition temperature of the right order of magnitude. Among the parameters, the most sensitive one for T c is the frequency spread of the spin fluctuations. This fact enables us to present a possible unified picture of the antiferromagnetic spin fluctuation-induced superconductors, including heavy fermion superconductors and organic superconductors. This point of view may be confirmed to a certain extent by microscopic calculations based on the fluctuation exchange approximation for the two-dimensional Hubbard models representing not only the cuprates but also organic and trellis lattice compounds. The review is concluded with some discussions on future problems, e.g. the pseudo spin-gap in the under-doped region.  相似文献   

3.

Copper-oxide (cuprate) high-temperature superconductors are doped Mott insulators. The undoped parent compounds are antiferromagnetic insulators, and superconductivity occurs only when an appropriate number of charge carriers (electrons or holes) are introduced by doping. All cuprate materials contain CuO2 planes (Figure 1a) in their crystal structure; the doped carriers are believed to go into these CuO2 planes, which are responsible for high-temperature superconductivity. High-temperature superconductors are characterized by their unusual physical properties, both in the superconducting state (below the superconducting transition temperature Tc) and in the normal state (above Tc). Since the discovery of high-temperature superconductivity in 1986 [1], these unusual physical properties and the mechanism of superconductivity have been prominent issues in condensed matter physics [2].  相似文献   

4.
李世亮  刘曌玉  谷延红 《物理学报》2018,67(12):127401-127401
铁基超导体中普遍存在着反铁磁、超导和向列相,因此研究向列相的性质及其与反铁磁、超导的关系对于理解铁基超导体的低能物理及高温超导电性具有非常重要的作用.所谓向列相是指电子态自发破缺了晶格的面内四重旋转对称性而形成的有序态,从而导致样品的某些物理性质出现了两重的各向异性.我们通过自主研发的单轴压强装置,可以在低温下原位改变压强,测量电阻的变化,从而得到向列极化率.本文介绍了我们利用该装置在最近几年研究铁基超导体的向列相和向列涨落所取得的一些成果,包括详细研究了BaFe_(2-x)Ni_xAs_2体系中的向列量子临界点及其量子临界涨落,并提出了基于向列涨落强弱调节的铁基超导体统一相图.这些结果表明,向列相及其涨落与反铁磁和超导均有很强的耦合,对于理解铁基超导体中磁性和超导电性非常关键.  相似文献   

5.
We study the spin singlet superconductivity exhibited in an itinerant Ising model Hamiltonian. This Hamiltonian models the Cu–O layers in highT c oxide superconductors. Electrons are itinerant through nearest neighbor hopping. An Ising term is introduced to describe the antiferromagnetic superexchange interaction between electrons nominally on nearest neighbor Cu sites. We discuss various symmetry states allowed by the model, and give detailed predictions of the superconducting energy gap, specific heat, susceptibility, andT c variation with carrier concentration. Results are compared to experimental data on highT c superconductors and reasonable agreement is obtained.  相似文献   

6.
This review attempts to present the most salient developments of research on organic conductors and superconductors during the past 10 years. A theoretical introduction treats instabilities of quasi-one-dimensional electron systems and associated precursor effects which are relevant to the experimental results on organic conductors. We then describe the characterization of quasi-one-dimensional organic conductors by their transport, optical and magnetic properties. Finally, two sections are devoted to the experimental investigation of the low temperature instabilities: lattice instability in TTF-TCNQ and related compounds, superconducting or antiferromagnetic instabilities in the (TMTSF)2X series. The importance of one-dimensional fluctuations is emphasized in both lattice and superconducting instabilities.  相似文献   

7.
In this paper the low-temperature properties of two isostructural canonical heavy-fermion compounds are contrasted with regards to the interplay between antiferromagnetic (AF) quantum criticality and superconductivity. For CeCu2Si2, fully-gapped d-wave superconductivity forms in the vicinity of an itinerant three-dimensional heavy-fermion spin-density-wave (SDW) quantum critical point (QCP). Inelastic neutron scattering results highlight that both quantum critical SDW fluctuations as well as Mott-type fluctuations of local magnetic moments contribute to the formation of Cooper pairs in CeCu2Si2. In YbRh2Si2, superconductivity appears to be suppressed at T???10?mK by AF order (TN?=?70?mK). Ultra-low temperature measurements reveal a hybrid order between nuclear and 4f-electronic spins, which is dominated by the Yb-derived nuclear spins, to develop at TA slightly above 2?mK. The hybrid order turns out to strongly compete with the primary 4f-electronic order and to push the material towards its QCP. Apparently, this paves the way for heavy-fermion superconductivity to form at Tc?=?2?mK. Like the pressure – induced QCP in CeRhIn5, the magnetic field – induced one in YbRh2Si2 is of the local Kondo-destroying variety which corresponds to a Mott-type transition at zero temperature. Therefore, these materials form the link between the large family of about fifty low-T unconventional heavy – fermion superconductors and other families of unconventional superconductors with higher Tcs, notably the doped Mott insulators of the cuprates, organic charge-transfer salts and some of the Fe-based superconductors. Our study suggests that heavy-fermion superconductivity near an AF QCP is a robust phenomenon.  相似文献   

8.
杨义峰  李宇 《物理学报》2015,64(21):217401-217401
与其他非常规超导系列相比, 重费米子超导体往往具有丰富多样的竞争序, 超导与各种竞争序相伴而生, 电子配对与反铁磁涨落、铁磁涨落、价态涨落、电四极矩涨落等量子临界涨落密切相关, 扩充了非常规超导的研究内容. 重费米子材料中的f电子往往同时参与超导与各种竞争序的形成, 表现出局域与巡游的二重性. 重费米子二流体理论为理解重费米子超导与竞争序的关系提供了新的思路.  相似文献   

9.
The applications of Mössbauer spectroscopy to studies of superconductivity are reviewed. with an emphasis on magnetic properties. Important contributions utilizing this technique have included studies of spin-lattice relaxation rates for magnetic impurities as a measure of magnetic pair-breaking effects, studies of magnetic ordering and its relationship to superconductivity in ternary superconductors such as the Chevrel phase, Re-Rh4B4 and oxide superconducting compounds, evaluation of crystal field ground states for magnetic ions, and studies of substitutional sites and the role of impurities on superconductivity in the high temperature superconductors.  相似文献   

10.
Iron-chalcogenide compounds with FeSe(Te, S) layers did not attract much attention until the discovery of high-Tc superconductivity (SC) in the iron-pnictide compounds at the begining of 2008. Compared with FeAs-based superconductors, iron-chalcogenide superconductors have aroused enormous enthusiasm to study the relationship between SC and magnetisms with several distinct features, such as different antiferromagnetic ground states with relatively large moments in the parents, indicating possibly different superconducting mechanisms, the existence of the excess Fe atoms or Fe vacancies in the crystal lattice. Another reason is that the large single crystals are easily grown for the iron-chalcogenide compounds. This review will focus on our exploration for the iron-chalcogenide superconductors and discussion on several issues, including the crystal structure, magnetic properties, superconductivity, and phase separation. Some of them reach a consensus but some important questions still remain to be answered.  相似文献   

11.
郭静  吴奇  孙力玲 《物理学报》2018,67(20):207409-207409
始于2008年的铁基超导体研究续写了高温超导发展史的新篇章.回顾过去十年对铁基超导体的研究,在理论、实验及应用方面都取得了辉煌的成绩,丰富了人们对高温超导电性的认识,为突破高温超导机理研究、最终实现超导材料的人工设计与更广泛的应用奠定了坚实的基础.本文主要介绍了通过高压实验研究手段在铁基超导体的研究中取得的一些重要进展及呈现出的新现象和新物理,例如压致超导现象、压力导致的超导再进入现象、压力对超导转变温度的提升效应、压力研究对铁基超导体超导转变温度的预测、相分离结构对超导电性的影响及反铁磁-超导双临界点的发现等.希望这些高压研究结果与本文报道的其他各类实验与理论研究成果一起,为全面、深入地理解铁基超导体勾画出一幅较为完整的物理图像.  相似文献   

12.
The influence of antiferromagnetic order on the upper critical field of superconductors is investigated within the framework of Eliashberg theory. Below the Néel temperature the superconductor is characterized by Cooper pairs of quasiparticle states which are related by time reversal followed by a lattice translation. This leads to a change in the effective attraction between the quasiparticles which we calculate explicitely for the Chevrel phase compounds RE Mo6S8 (RE=Gd, Tb, and Dy). The results for the upper critical fields clearly show that our theory yields a consistent explanation of the experimentally observed anomalous behaviour.  相似文献   

13.
We report the observation of superconductivity in the spin-Peierls Fabre salt (TMTTF)2PF6 from pressure dependent electrical transport measurements above a threshold of 4.35 GPa. The data complete the sequence of ground states of this compound in the temperature and pressure plane adducing an empirical basis to the universal character of the phase diagram of the Fabre salts and their selenide analogues, the Bechgaard salts. The structure of the phase diagram at the approach of the crossover between spin-density wave and superconducting states is compared with the results of scaling theory of the interplay between both electronic instabilities under pressure. The comparison supports the view that magnetism and superconductivity in these compounds have a common electronic origin. Received 10 January 2001  相似文献   

14.
G. Baskaran 《Pramana》2009,73(1):61-112
Discovery of high T c superconductivity in La2?x Ba x CuO4 by Bednorz and Muller in 1986 was a breakthrough in the 75-year long search for new superconductors. Since then new high T c superconductors, not involving copper, have also been discovered. Superconductivity in cuprates also inspired resonating valence bond (RVB) mechanism of superconductivity. In turn, RVB theory provided a new hope for finding new superconductors through a novel electronic mechanism. This article first reviews an electron correlation-based RVB mechanism and our own application of these ideas to some new noncuprate superconducting families. In the process we abstract, using available phenomenology and RVB theory, that there are five directions to search for new high T c superconductors. We call them five-fold way. As the paths are reasonably exclusive and well-defined, they provide more guided opportunities, than before, for discovering new superconductors. The five-fold ways are (i) copper route, (ii) pressure route, (iii) diamond route, (iv) graphene route and (v) double RVB route. Copper route is the doped spin-½ Mott insulator route. In this route one synthesizes new spin-½ Mott insulators and dopes them chemically. In pressure route, doping is not external, but internal, a (chemical or external) pressure-induced self-doping suggested by organic ET-salts. In the diamond route we are inspired by superconductivity in boron-doped diamond and our theory. Here one creates impurity band Mott insulators in a band insulator template that enables superconductivity. Graphene route follows from our recent suggestion of superconductivity in doped graphene, a two-dimensional broadband metal with moderate electron correlations, compared to cuprates. Double RVB route follows from our recent theory of doped spin-1 Mott insulator for superconductivity in iron pnictide family.  相似文献   

15.
We present a review of theoretical investigations into the Kohn-Luttinger nonphonon superconductivity mechanism in various 3D and 2D repulsive electron systems described by the Fermi-gas, Hubbard, and Shubin-Vonsovsky models. Phase diagrams of the superconducting state are considered, including regions of anomalous s-, p-, and d-wave pairing. The possibility of a strong increase in the superconducting transition temperature T c even for a low electron density is demonstrated by analyzing the spin-polarized case or the two-band situation. The Kohn-Luttinger theory explains or predicts superconductivity in various materials such as heterostructures and semimetals, superlattices and dichalcogenides, high-T c superconductors and heavy-fermion systems, layered organic superconductors, and ultracold Fermi gases in magnetic traps. This theory also describes the anomalous electron transport and peculiar polaron effects in the normal state of these systems. The theory can be useful for explaining the origin of superconductivity and orbital currents (chiral anomaly) in systems with the Dirac spectrum of electrons, including superfluid 3He-A, doped graphene, and topological superconductors.  相似文献   

16.
R Jagadish  K P Sinha 《Pramana》1987,28(5):565-571
The discovery of magnetic superconductors has posed the problem of the coexistence of two kinds of orders (magnetic and superconducting) in some temperature intervals in these systems. New microscopic mechanisms developed by us to explain the coexistence and reentrant behaviour are reported. The mechanism for antiferromagnetic superconductors which shows enhancement of superconductivity below the magnetic transition is found relevant for rare-earth systems having less than half-filled f-atomic shells. The theory will be compared with the experimental results of SmRh4B4 system. A phenomenological treatment based on a generalized Ginzburg-Landau approach will also be presented to explain the anomalous behaviour of the second critical field in some antiferromagnetic superconductors. These magnetic superconductors provide two kinds of Bose fields, namely, phonons and magnons which interact with each other and also with the conduction electrons. Theoretical studies of the effects of the excitations of these modes on superconducting pairing and magnetic ordering in these systems will be discussed.  相似文献   

17.
Superconducting and magnetically long-range ordered states were believed to be mutually exclusive phenomena. The discovery of rare-earth compounds in recent years, which exhibit both superconductivity and magnetic ordering (ferromagnetic, antiferromagnetic or sinusoidal), has led to considerable theoretical and experimental work on such systems.In the present article, we give a review of various theoretical models and important experimental results. In the theoretical sections, we start with the Abrikosov-Gorkov pair breaking theory for dilute alloys and discuss its improvement in the work of Müller-Hartmann and Zittartz. Then, in the context of magnetic superconductors, various microscopic theories that have been advanced are presented. These predict re-entrant behaviour in some systems (ferromagnetic superconductors) and coexistence regions in others (particularly antiferromagnetic superconductors). Following this, phenomenological generalized Ginzburg-Landau theories for two kinds of orders (superconducting and magnetic) are presented. A section dealing with renormalization group analysis of phase diagrams in magnetic superconductors is given.In experimental sections, the properties of each rare-earth compounds (ternary as well as some tetranery) are reviewed. These involve susceptibility, heat capacity, resistivity, upper critical field, neutron scattering and magnetic resonance measurements. The anomalous behaviour of the upper critical field of antiferromagnetic superconductors near the Néel temperature is discussed both in theory sections and experimental section for various systems.  相似文献   

18.
The electronic structure and magnetic properties of new layered oxyselenide compounds La2O3Fe2Se2 and La2O3Co2Se2 are studied by first-principles calculations. Our results indicate that both compounds are Mott-insulators with orbital ordering. The ground states of both compounds are the checkerboard antiferromagnetic states, which are different from the iron pnictide superconductors, although their structures are similar to those of the Fe-As-based superconductors.  相似文献   

19.
Quasi-two-dimensional organic superconductors are reviewed. These systems exhibit many interesting phenomena, including reduced dimensionality, strong electron - electron and electron - phonon interactions and the proximity of antiferromagnetism, insulator states and superconductivity. Moreover, it has been possible to measure the electronic bands of many of the organics in great detail, in contrast to the situation in other well-known systems in which similar phenomena occur. The crystal structure and normal-state properties of the organics are described before the experimental evidence is presented for and against exotic superconductivity mediated by antiferromagnetic fluctuations. Finally, three instances of field-induced unconventional superconductivity are described.  相似文献   

20.
近年来,高压强极端条件下的富氢化合物成为高温超导体研究的热点目标材料体系.该领域目前取得了两个标志性重要进展,先后发现了共价型H3S富氢超导体(Tc=200 K)和以LaH10(Tc=260 K,–13℃),YH6,YH9等为代表的一类氢笼合物结构的离子型富氢超导体,先后刷新了超导温度的新纪录.这些研究工作燃发了人们在高压下富氢化合物中发现室温超导体的希望.本文重点介绍高压下富氢高温超导体的相关研究进展,讨论富氢化合物产生高温超导电性的物理机理,展望未来在富氢化合物中发现室温超导体的可能性并提出多元富氢化合物候选体系.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号