首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this paper, projective lag synchronization of the general complex dynamical networks with different nodes is investigated. Combining Barbalat’s lemma with adaptive control technique, the adaptive feedback controllers are constructed to achieve projective lag synchronization between the dynamical network with diverse nodes and arbitrary desired trajectory. The presented synchronization method can be applied to any complex networks. It is discovered that the update gains, the time delay, the network size and the network topology have influence on the synchronization effect. Furthermore, projective lag synchronization of the dynamical networks can still be efficiently realized in presence of noise and parameter perturbations. Corresponding numerical simulations are performed to validate the effectiveness and robustness of the proposed synchronization scheme.  相似文献   

2.
Generalized function projective (lag, anticipated and complete) synchronization between two different complex networks with nonidentical nodes is investigated in this paper. Based on Barbalat’s lemma, some sufficient synchronization criteria are derived by applying the nonlinear feedback control. Although previous work studied function projective synchronization on complex dynamical networks, the dynamics of the nodes are coupled partially linear chaotic systems. In our work, the dynamics of the nodes of the complex networks are any chaotic systems without the limitation of the partial linearity. In addition, each network can be undirected or directed, connected or disconnected, and nodes in either network may have identical or different dynamics. The proposed strategy is applicable to almost all kinds of complex networks. Numerical simulations further verify the effectiveness and feasibility of the proposed synchronization method. Numeric evidence shows that the synchronization rate is sensitively influenced by the feedback strength, the time delay, the network size and the network topological structure.  相似文献   

3.
Song Zheng 《Complexity》2016,21(Z1):547-556
This paper studies the projective synchronization behavior in a drive‐response dynamical network with coupling time‐varying delay via intermittent impulsive control. Different from the most publications on drive‐response dynamical networks under the general impulsive control, here the impulsive effects can only exist at control windows, not during the whole time. Moreover, intermittent impulsive control does not need the limitation of the upper bound of the impulsive intervals. By utilizing the Lyapunov‐Razumikhin technique, some sufficient conditions for the projective synchronization are derived. Numerical simulations are provided to verify the correctness and effectiveness of the proposed method and results. © 2016 Wiley Periodicals, Inc. Complexity 21: 547–556, 2016  相似文献   

4.
赵军产  李钦 《数学杂志》2016,36(4):727-736
本文研究了扰动下复杂动力网络的同步问题. 利用输入状态稳定性分析的方法, 给出了鲁棒同步的概念, 分析了非时间延迟的和含有时间延迟动力网络的同步, 数值仿真也验证了结果的有效性.  相似文献   

5.
This paper investigates the problem of function projective synchronization (FPS) in drive-response dynamical networks (DRDNs) with non-identical nodes. Based on the adaptive open-plus-closed-loop (AOPCL) method, a general method of function projective synchronization is derived, which is robust to limited accuracy of data and effects of noise. Corresponding numerical simulations on the Lorenz system are performed to verify and illustrate the analytical results.  相似文献   

6.
This article is concerned with the problem of pinning outer synchronization between two complex delayed dynamical networks via adaptive intermittent control. At first, a general model of hybrid‐coupled dynamical network with time‐varying internal delay and time‐varying coupling delay is given. Then, an aperiodically adaptive intermittent pinning‐control strategy is introduced to drive two such delayed dynamical networks to achieve outer synchronization. Some sufficient conditions to guarantee global outer‐synchronization are derived by constructing a novel piecewise Lyapunov function and utilizing stability analytical method. Moreover, a simple pinned‐node selection scheme determining what kinds of nodes should be pinned first is provided. It is noted that the adaptive pinning control type is aperiodically intermittent, where both control period and control width are non‐fixed. Finally, a numerical example is given to illustrate the validity of the theoretical results. © 2016 Wiley Periodicals, Inc. Complexity 21: 593–605, 2016  相似文献   

7.
This paper studies the pinning impulsive synchronization problem for a class of complex dynamical networks with time-varying delay. By applying the Lyapunov stability theory and mathematical analysis technique, sufficient verifiable criterion for the synchronization of delayed complex dynamical networks with small delay is derived analytically. It is shown that synchronization can be achieved by only impulsively controlling a small fraction of network nodes. Moreover, a novel sufficient condition is constructed to relax the restrictions on the size of time-delay and guarantee the synchronization of concerned networks with large delay. Two numerical examples are presented to illustrate the effectiveness of the obtained results.  相似文献   

8.
The problems of synchronization and pinning control for general time-delay complex dynamical networks are investigated. In this paper, less conservative criterions for both continuous-time and discrete-time complex dynamical networks with time delay are obtained. Pinning control strategies are respectively, designed to make these complex dynamical networks synchronized. Moreover, the problems of designing controllers are converted into solving optimal problems of a series of linear matrix inequalities, which reduces the computation complexity. Finally, numerical simulations verify the effectiveness of our methodology.  相似文献   

9.
The synchronization problem of some general complex dynamical networks with time-varying delays is investigated. Both time-varying delays in the network couplings and time-varying delays in the dynamical nodes are considered. The delays considered in this paper are assumed to vary in an interval, where the lower and upper bounds are known. Based on a piecewise analysis method, the variation interval of the time delay is firstly divided into several subintervals, by checking the variation of the derivative of a Lyapunov function in every subinterval, then the convexity of matrix function method and the free weighting matrix method are fully used in this paper. Some new delay-dependent synchronization stability criteria are derived in the form of linear matrix inequalities. Two numerical examples show that our method can lead to much less conservative results than those in the existing references.  相似文献   

10.
复杂动态网络的有限时间同步   总被引:1,自引:0,他引:1  
陈姚  吕金虎 《系统科学与数学》2009,29(10):1419-1430
复杂网络无处不在,同步是自然界中广泛存在的一类非常重要的非线性现象.过去10年,人们对复杂网络的同步开展了系统而深入的研究,包括恒等同步、广义同步、簇同步以及部分同步等.上述大部分结果中对同步速度的刻画往往是渐进的,只有当时间趋于无穷的时候,网络才能实现同步,而对于网络能够在多长时间内可以实现同步却知之甚少.作者以几类典型的非线性耦合的复杂动态网络为例,深入探讨了复杂动态网络的有限时间同步的规律.具体而言,基于上述几类典型的复杂动态网络,证明了在某些合适的条件下,网络能够在有限时间内实现精确同步.此外,用一个典型的数值仿真实例验证了上述有限时间同步的准则.有限时间同步有效地避免了网络只有在无穷时刻才能实现同步的问题,对网络同步的实际工程应用具有基本的现实意义.  相似文献   

11.
The synchronization problem for both continuous and discrete‐time complex dynamical networks with time‐varying delays is investigated. Using optimal partitioning method, time‐varying delays are partitioned into l subintervals and generalized results are derived in terms of linear matrix inequalities (LMIs). New delay‐dependent synchronization criteria in terms of LMIs are derived by constructing appropriate Lyapunov–Krasovskii functional, reciprocally convex combination technique and some inequality techniques. Numerical examples are given to illustrate the effectiveness and advantage of the proposed synchronization criteria. © 2014 Wiley Periodicals, Inc. Complexity 21: 193–210, 2015  相似文献   

12.
In this study, the synchronization problem is addressed for a class of complex dynamical networks in which every identical node is a time-delayed Lur’e system. Delay-dependent and delay-independent synchronization criteria are established through a decoupling technique, which reduces a group of high-dimensional linear matrix inequalities (LMIs) to the test of two groups of lower-dimensional LMIs. An extension to the synchronization of discrete-time Lur’e networks with time delay is also studied. The efficiency and applicability of the proposed methodology is demonstrated by a numerical example through simulation.  相似文献   

13.
This paper mainly investigates synchronization of complex dynamical networks (CDNs) with both system delay and coupled delay through distributed delayed impulsive control. Instead of constraining the impulsive weight and impulsive delay one by one, a new concept of average delayed impulsive weight is proposed to obtain more relaxed conditions. Subsequently, based on the impulsive control topology, Lyapunov theory and linear matrix inequality (LMI) design, certain flexible criteria of global exponential synchronization (GES) are given and the corresponding convergence rate is estimated. It is interesting to see that the CDNs can still achieve synchronization under comprehensive conditions though impulsive weights work negatively. Namely, the delays in impulsive control are able to promote synchronization potentially. Finally, simulations are given to show that the distributed delayed impulsive control can not only speeds up the convergence rate for synchronized networks, but also facilitates synchronization for desynchronized networks. In addition, the obtained results can be applied to unmanned craft systems.  相似文献   

14.
A new type of linear observer based projective, projective anticipating and projective lag synchronization of time-delayed Rössler system is studied. Along with this, the approach arbitrarily scales a drive system attractor and hence a similar chaotic attractor of any desired scale can be realized with the help of a synchronizing scaling factor. A scalar synchronizing output is considered where the output equation includes both the delay and non-delay terms of the nonlinear function. The condition for synchronization is derived analytically and the values of the coupling parameters are obtained. Analytical results are verified through numerical investigation and the effect of modulated time delay in the method is discussed. An important aspect of this method is that it does not require the computation of conditional Lyapunov exponents for the verification of synchronization.  相似文献   

15.
In the present article, the authors have proposed a modified projective adaptive synchronization technique for fractional‐order chaotic systems. The adaptive projective synchronization controller and identification parameters law are developed on the basis of Lyapunov direct stability theory. The proposed method is successfully applied for the projective synchronization between fractional‐order hyperchaotic Lü system as drive system and fractional‐order hyperchaotic Lorenz chaotic system as response system. A comparison between the effects on synchronization time due to the presence of fractional‐order time derivatives for modified projective synchronization method and proposed modified adaptive projective synchronization technique is the key feature of the present article. Numerical simulation results, which are carried out using Adams–Boshforth–Moulton method show that the proposed technique is effective, convenient and also faster for projective synchronization of fractional‐order nonlinear dynamical systems. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
The synchronization stability problem of general complex dynamical networks with non-delayed and delayed coupling is investigated based on a piecewise analysis method, the variation interval of the time delay is firstly divided into several subintervals, by checking the variation of derivative of a Lyapunov functional in every subinterval, several new delay-dependent synchronization stability conditions are derived in the form of linear matrix inequalities, which are easy to be verified by the LMI toolbox. Some numerical examples show that, when the number of the divided subintervals increases, the corresponding criteria can provide much less conservative results.  相似文献   

17.
This paper considers delay dependent synchronizations of singular complex dynamical networks with time-varying delays. A modified Lyapunov-Krasovskii functional is used to derive a sufficient condition for synchronization in terms of LMIs (linear matrix inequalities) which can be easily solved by various convex optimization algorithms. Numerical examples show the effectiveness of the proposed method.  相似文献   

18.
The synchronization problem for a class of complex dynamical networks with stochastic disturbances and probabilistic interval time-varying delays is investigated. Based on the stochastic analysis techniques and properties of the Kronecker product, some delay-dependent asymptotical synchronization stability criteria are derived in the form of linear matrix inequalities (LMIs). The solvability of derived conditions depends not only on the size of the delay, but also on the probability of Bernoulli stochastic variables. A numerical example is given to illustrate the feasibility and effectiveness of the proposed method.  相似文献   

19.
复杂网络广泛存在于日常生活,首先,给出几类标准的网络模型;然后,利用稳定性控制方法设计并实现了具有时滞与非时滞耦合的复杂网络模型快速控制;最后,通过构造优化Lyapunov函数,讨论其模型的射影同步问题,得到了系统全局稳定的条件和有效的控制器,以实例数值验证其方法的可行性。  相似文献   

20.
We report on generalized projective synchronization between two identical time delay chaotic systems with single time delays. It overcomes some limitations of the previous work where generalized projective synchronization has been investigated only in finite-dimensional chaotic systems, so we can achieve generalized projective synchronization in infinite-dimensional chaotic systems. This method allows us to arbitrarily direct the scaling factor onto a desired value. Numerical simulations show that this method works very well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号