首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
\({{\mathbb {Z}}}^2\)-periodic entropy solutions of hyperbolic scalar conservation laws and \({{\mathbb {Z}}}^2\)-periodic viscosity solutions of Hamilton–Jacobi equations are not unique in general. However, uniqueness holds for viscous scalar conservation laws and viscous Hamilton–Jacobi equations. Bessi (Commun Math Phys 235:495–511, 2003) investigated the convergence of approximate \({{\mathbb {Z}}}^2\)-periodic solutions to an exact one in the process of the vanishing viscosity method, and characterized this physically natural \({{\mathbb {Z}}}^2\)-periodic solution with the aid of Aubry–Mather theory. In this paper, a similar problem is considered in the process of the finite difference approximation under hyperbolic scaling. We present a selection criterion different from the one in the vanishing viscosity method, which may depend on the approximation parameter.  相似文献   

2.
In this paper we propose a spectral element: vanishing viscosity (SEW) method for the conservation laws on the semi-infinite interval. By using a suitable mapping, the problem is first transformed into a modified conservation law in a bounded interval, then the well-known spectral vanishing viscosity technique is generalized to the multi-domain case in order to approximate this trarsformed equation more efficiently. The construction details and convergence analysis are presented. Under a usual assumption of boundedness of the approximation solutions, it is proven that the solution of the SEW approximation converges to the uniciue entropy solution of the conservation laws. A number of numerical tests is carried out to confirm the theoretical results.  相似文献   

3.
The authors study vanishing viscosity limits of solutions to the 3-dimensional incompressible Navier-Stokes system in general smooth domains with curved boundaries for a class of slip boundary conditions. In contrast to the case of flat boundaries, where the uniform convergence in super-norm can be obtained, the asymptotic behavior of viscous solutions for small viscosity depends on the curvature of the boundary in general. It is shown, in particular, that the viscous solution converges to that of the ideal Euler equations in C([0, T];H1(Ω)) provided that the initial vorticity vanishes on the boundary of the domain.  相似文献   

4.
Optimal control for a system consistent of the viscosity dependent Stokes equations coupled with a transport equation for the viscosity is studied. Motivated by a lack of sufficient regularity of the adjoint equations, artificial diffusion is introduced to the transport equation. The asymptotic behavior of the regularized system is investigated. Optimality conditions for the regularized optimal control problems are obtained and again the asymptotic behavior is analyzed. The lack of uniqueness of solutions to the underlying system is another source of difficulties for the problem under investigation.  相似文献   

5.
We establish existence and stability of multidimensional shock fronts in the vanishing viscosity limit for a general class of conservation laws with “real”, or partially parabolic, viscosity including the Navier-Stokes equations of compressible gas dynamics with standard or van der Waals-type equation of state. More precisely, given a curved Lax shock solution u0 of the corresponding inviscid equations for which (i) each of the associated planar shocks tangent to the shock front possesses a smooth viscous profile and (ii) each of these viscous profiles satisfies a uniform spectral stability condition expressed in terms of an Evans function, we construct nearby smooth viscous shock solutions uε of the viscous equations converging to u0 as viscosity ε→0, and establish for these sharp linearized stability estimates generalizing those of Majda in the inviscid case. Conditions (i)-(ii) hold always for shock waves of sufficiently small amplitude, but in general may fail for large amplitudes.We treat the viscous shock problem considered here as a representative of a larger class of multidimensional boundary problems arising in the study of viscous fluids, characterized by sharp spectral conditions rather than symmetry hypotheses, which can be analyzed by Kreiss-type symmetrizers.Compared to the strictly parabolic (artificial viscosity) case, the main new features of the analysis appear in the high frequency estimates for the linearized problem. In that regime we use frequency-dependent conjugators to decouple parabolic components that are smoothed from hyperbolic components (like density in Navier-Stokes) that are not. The construction of the conjugators and the subsequent estimates depend on a careful spectral analysis of the linearized operator.  相似文献   

6.
We consider the planar rotation-symmetric motion by inertia of a viscous incompressible fluid in a ring with free boundary. We reduce the corresponding initial-boundary value problem for the Navier–Stokes equations to some problem for a coupled system of one parabolic equation and two ordinary differential equations. We suppose that the coefficient of the derivatives of the sought functions with respect to time (the quasistationary parameter) is small; so the system is singularly perturbed. In this article we construct an asymptotic expansion for a solution to the rotating ring problem in a small quasistationary parameter and obtain a smallness estimate for the difference between the exact and approximate solutions.  相似文献   

7.
We construct global solutions in L^∞ for the equations of motion or one-dimensional viscoelastic media, in Lagrangian coordinates, with arbitrarily large L^∞ initial data, via the vanishing viscosity method. A priori estimates for approximate solutions, with artificial viscosity, are derived through entropy inequalities. The convergence of the approximate solutions to a weak solution compatible with the entropy condition is demonstrated. This also establishes the compactness of the corresponding solution operators, which indicates that the memory effect does not affect the hyperbolic behavior.  相似文献   

8.
A solution of single nonlinear first order equations may develop jump discontinuities even if initial data is smooth. Typical examples include a crude model equation describing some bunching phenomena observed in epitaxial growth of crystals as well as conservation laws where jump discontinuities are called shocks. Conventional theory of viscosity solutions does not apply. We introduce a notion of proper (viscosity) solutions to track whole evolutions for such equations in multi‐dimensional spaces. We establish several versions of comparison principles. We also study the vanishing viscosity method to construct a unique global proper solution at least when the evolution is monotone in time or the initial data is monotone in some sense under additional technical assumptions. In fact, we prove that the graph of approximate solutions converges to that of a proper solution in the Hausdorff distance topology. Such a convergence is also established for conservation laws with monotone data. In particular, local uniform convergence outside shocks is proved. © 2001 John Wiley & Sons, Inc.  相似文献   

9.
In this paper, we consider the vanishing viscosity limit problem for a system arising from the Keller-Segel equations in three space dimensions. First, we construct an accurate approximate solution that incorporates the effects of boundary layers. Then, we prove the structural stability of the approximate solution as the chemical diffusion coefficient tends to zero. Our approach is based on the method of matched asymptotic expansions of singular perturbation theory and the classical energy estimates.  相似文献   

10.
考虑图像修复中BSCB方程和变形的BSCB方程组的粘性问题.运用半群理论,得到粘性BSCB方程光滑解的存在唯一性.此外,利用粘性消失方法还得到:当粘性系数ν→0时,粘性变形的BSCB方程组的解在经典意义下收敛到变形的BSCB方程组的解.  相似文献   

11.
This paper presents several examples of fundamental problems involving weak continuity and compactness for nonlinear partial differential equations, in which compensated compactness and related ideas have played a significant role. The compactness and convergence of vanishing viscosity solutions for nonlinear hyperbolic conservation laws are first analyzed, including the inviscid limit from the Navier-Stokes equations to the Euler equations for homentropic flow, the vanishing viscosity method to construct the global spherically symmetric solutions to the multidimensional compressible Euler equations, and the sonic-subsonic limit of solutions of the full Euler equations for multi-dimensional steady compressible fluids. Then the weak continuity and rigidity of the Gauss-Codazzi-Ricci system and corresponding isometric embeddings in differential geometry are revealed. Further references are also provided for some recent developments on the weak continuity and compactness for nonlinear partial differential equations.  相似文献   

12.
Naoki Tsuge 《Acta Appl Math》2017,147(1):177-186
We are concerned with a scalar conservation law with a source term. This equation is proposed to describe the qualitative behavior of waves for a general system in resonance with the source term by T.P. Liu. In addition to this, the scalar conservation law is used in various areas such as fluid dynamics, traffic problems etc.In the present paper, we prove the global existence and stability of entropy solutions to the Cauchy problem. The difficult point is to obtain the bounded estimate of solutions. To solve it, we introduce some functions as the lower and upper bounds. Therefore, our bounded estimate depends on the space variable. This idea comes from the generalized invariant region theory for the compressible Euler equation. The method is also applicable to other nonlinear problems involving similar difficulties. Finally, we use the vanishing viscosity method to construct approximate solutions and derive the convergence by the compensated compactness.  相似文献   

13.
The problem posed by Gelfand on the asymptotic behavior (in time) of solutions to the Cauchy problem for a first-order quasilinear equation with Riemann-type initial conditions is considered. By applying the vanishing viscosity method with uniform estimates, exact asymptotic expansions in the Cauchy–Gelfand problem are obtained without a priori assuming the monotonicity of the initial data, and the initial-data parameters responsible for the localization of shock waves are described.  相似文献   

14.
《数学季刊》2016,(1):51-59
In this paper, we show the asymptotic limit for the 3D Boussinesq system with zero viscosity limit or zero diffusivity limit. By the classical energy method, we prove that as viscosity(or diffusivity) coefficient goes to zero the solutions of the fully viscous equations converges to those of zero viscosity(or zero diffusivity) equations, which extend the previous results on the asymptotic limit under the conditions of the zero parameter(zero viscosity ν = 0 or zero diffusivity η = 0) in 2D case separately.  相似文献   

15.
In this paper, we study the inviscid limit problem for the scalar viscous conservation laws on half plane. We prove that if the solution of the corresponding inviscid equation on half plane is piecewise smooth with a single shock satisfying the entropy condition, then there exist solutions to the viscous conservation laws which converge to the inviscid solution away fromthe shock discontinuity and the boundary at a rate of ε^1 as the viscosity ε tends to zero.  相似文献   

16.
We investigate the initial value problem for a class of nonlinear wave equations of sixth order with damping. The decay structure of this equation is of the regularity‐loss type, which causes difficulty in high‐frequency region. By using the Fourier splitting frequency technique and energy method in Fourier space, we establish asymptotic profiles of solutions to the linear equation that is given by the convolution of the fundamental solutions of heat and free wave equation. Moreover, the asymptotic profile of solutions shows the decay estimate of solutions to the corresponding linear equation obtained in this paper that is optimal under some conditions. Finally, global existence and optimal decay estimate of solutions to this equation are also established. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

17.
This article is concerned with the pointwise error estimates for vanishing vis- cosity approximations to scalar convex conservation laws with boundary.By the weighted error function and a bootstrap extrapolation technique introduced by Tadmor-Tang,an optimal pointwise convergence rate is derived for the vanishing viscosity approximations to the initial-boundary value problem for scalar convex conservation laws,whose weak entropy solution is piecewise C 2 -smooth with interaction of elementary waves and the ...  相似文献   

18.
The purpose of this paper is to study the linear stability of “viscous” roll waves. These are periodic continuous traveling waves solutions of viscous perturbations of inhomogeneous hyperbolic systems. We first study the scalar case for the Burgers equation and for an inhomogeneous hyperbolic equation. Then we analyze the stability of roll waves, solutions of the shallow water equations with a real viscosity. In both cases, we first analyze the Evans function and compute an asymptotic expansion in the low frequency regime. Under a strong spectral stability condition, we prove the linear stability of viscous roll waves, solutions of the Saint Venant equations, with pointwise estimates on the Green functions.  相似文献   

19.
An approximation of the Hamilton-Jacobi-Bellman equation connected with the infinite horizon optimal control problem with discount is proposed. The approximate solutions are shown to converge uniformly to the viscosity solution, in the sense of Crandall-Lions, of the original problem. Moreover, the approximate solutions are interpreted as value functions of some discrete time control problem. This allows to construct by dynamic programming a minimizing sequence of piecewise constant controls.  相似文献   

20.
The zero‐viscosity limit for an initial boundary value problem of the linearized Navier‐Stokes equations of a compressible viscous fluid in the half‐plane is studied. By means of the asymptotic analysis with multiple scales, we first construct an approximate solution of the linearized problem of the Navier‐Stokes equations as the combination of inner and boundary expansions. Next, by carefully using the technique on energy methods, we show the pointwise estimates of the error term of the approximate solution, which readily yield the uniform stability result for the linearized Navier‐Stokes solution in the zero‐viscosity limit. © 1999 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号