首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the present work, we report nitrogen and phosphorus co-doped 3-D structured carbon nanotube intercalated graphene nanoribbon composite. The graphene nanoribbons are prepared via partial exfoliation of multi-walled carbon nanotubes. In the graphene nanoribbons/CNTs composite, carbon nanotubes play a role of skeleton and support the exfoliated graphene nanoribbons to form the stereo structure. After high temperature heat-treatment with ammonium dihydrogen phosphate, the unique structure reserves both the properties of carbon nanotube and graphene, exhibiting excellent catalytic performance for the ORR with excellent onset and half-wave potential, which is similar to commercial Pt/C electrocatalysts.  相似文献   

2.
Multi-layer graphene nanoribbons have been made highly water soluble (4.7 mg ml(-1)) and stable for the first time by repetitious derivatization with p-carboxyphenyldiazonium salt; similarly, single-walled carbon nanotubes (4.8 mg ml(-1)) and ultra-short carbon nanotubes (50 mg ml(-1)) can also be made highly soluble by the methodology.  相似文献   

3.
Narrow, smooth-edged graphene nanoribbons are needed for graphene electronics to replace the current silicon technology. In their Communication on page?8041?ff., J. Wang, F. Ding, et?al. report a smart strategy for cutting single-walled carbon nanotubes (gray) into narrow graphene nanoribbons in H(2) gas (green) with a single transition-metal atom (Cu, red) as the chemical scissors.  相似文献   

4.
In situ decoration of very small CdSe quantum dots on graphene nanoribbons (GNRs) has been achieved during the electrochemical unzipping of single walled carbon nanotubes. Critical parameters like the width of the GNRs, size distribution of quantum dots and their organization on GNRs have been shown to be strongly dependent on the electric field and time.  相似文献   

5.
6.
Nanometer‐wide graphene nanoribbons can be synthesized from halogen aromatics through multistep on‐surface reactions, but the catalytic role of extrinsic transition‐metal atoms in these reactions are still to be explored. Here by low‐temperature scanning tunneling microscopy, we investigated the on‐surface synthesis of graphene nanoribbons from 10,10′‐dibromo‐9,9′‐bianthryl precursors in the presence of Ni atoms. Ni atoms not only act as catalysts in debromination and lead to the formation of an organometallic intermediate at 300 K, but also prompt the fusion reaction between graphene nanoribbons at 673 K. Our work demonstrates a more efficient way to fabricate fused graphene nanoribbons.  相似文献   

7.
The mechanism of the conversion of titanate nanotubes into nanoribbons is of considerable interest.The details of the transformation processes involved when nanoribbons are produced from a P25 TiO 2 powder precursor by alkaline hydrothermal treatment have been investigated systematically by transmission electron microscopy.A multistep attachment model is proposed for the growth at the early stage of coarsening.The treatment duration has a strong effect on the change in product morphology from hollow nanotubes into nanoribbons,since the nanotubes cannot retain their morphology in the strong alkaline solution for extended periods of time.Most of the nanotubes were etched and dissolved,providing the nutrients for subsequent nanoribbon growth.Some stable nanotubes grew spirally internally to form nanowires or became connected together to form rafts which acted as the grains for nanoribbon growth.With increasing hydrothermal time,a large number of nanotubes and other fragments became attached to the grains which began to grow larger and eventually formed the nanoribbons,in a process in which the stepped faces and kinked faces became fused and were eliminated while the flat faces were retained in the nanoribbon morphology.  相似文献   

8.

Single-walled carbon nanotubes (SWCNT), multi-walled carbon nanotubes (MWCNT) and graphene have been tested as carbon allotropes for the modification of carbon screen-printed electrodes (CSPEs) to simultaneously determine melatonin (MT) and serotonin (5-HT). Two groups of CSPEs, both 4 mm in diameter, were explored: The first includes commercial SWCNT, MWCNT and graphene, the second includes SWCNT, MWCNT, graphene oxide nanoribbons and reduced nanoribbons that were drop casted on the electrodes. The carbon nanomaterials enhanced the electroactive area in the following order: CSPE

Carbon nanomaterials on screen-printed electrodes: smart electrochemistry for fast, simultaneous and reliable detection of serotonin the molecule of happiness and melatonin the molecule of darkness.

  相似文献   

9.
Graphene nanoribbons (GNR) were generated in ethanol solution by unzipping pyrrolidine-functionalized carbon nanotubes under mild conditions. Evaporation of the solvent resulted in regular few-layer stacks of graphene nanoribbons observed by transmission electron microscopy (TEM) and X-ray diffraction. The experimental interlayer distance (0.49–0.56 nm) was confirmed by computer modelling (0.51 nm). Computer modelling showed that the large interlayer spacing (compared with graphite) is due to the presence of the functional groups and depends on their concentration. Stacked nanoribbons were observed to redissolve upon solvent addition. This preparation method could allow the fine-tuning of the interlayer distances by controlling the number and/or the nature of the chemical groups in between the graphene layers.  相似文献   

10.
The electronic and magnetic properties of oxidized zigzag and armchair graphene nanoribbons, with hydrogen passivated edges, have been investigated from ab initio pseudopotential calculations within the density functional scheme. The oxygen molecule in its triplet state is adsorbed most stably at the edge of a zigzag nanoribbon. The Stoner metallic behavior of the ferromagnetic nanoribbons and the Slater insulating (ground state) behavior of the antiferromagnetic nanoribbons remain intact upon oxygen adsorption. The formation of a spin-paired C-O bond drastically reduces the local atomic magnetic moment of carbon at the edge of the ferromagnetic zigzag ribbon.  相似文献   

11.
Carbon‐based nanomaterials have been widely studied in the past decade. Three approaches have been developed for the preparation of single‐handed helical carbonaceous nanotubes. The first approach uses the carbonization of organopolymeric nanotubes, where the organic polymers are polypyrrole, 3‐aminophenol‐formaldehyde resin, and m‐diaminobenzene‐formaldehyde resin. The second approach uses the carbonization of aromatic ring‐bridged polybissilsesquioxane followed by the removal of silica. Micropores exist within the walls of the carbonaceous nanotubes. The third approach uses the carbonization of organic compounds within silica nanotubes. This hard‐templating approach drives the formation of helical carbonaceous nanotubes containing twisted carbonaceous nanoribbons. All of these helical carbonaceous nanotubes exhibit optical activity, which is believed to originate from the chiral π‐π stacking of aromatic rings. They can be used as chirality inducers, and for lithium‐ion storage.  相似文献   

12.
Here we report a remarkable transformation of carbon nanotubes (CNTs) to nanoribbons composed of a few layers of graphene by a two-step electrochemical approach. This consists of the oxidation of CNTs at controlled potential, followed by reduction to form graphene nanoribbons (GNRs) having smooth edges and fewer defects, as evidenced by multiple characterization techniques, including Raman spectroscopy, atomic force microscopy, and transmission electron microscopy. This type of "unzipping" of CNTs (single-walled, multi-walled) in the presence of an interfacial electric field provides unique advantages with respect to the orientation of CNTs, which might make possible the production of GNRs with controlled widths and fewer defects.  相似文献   

13.
Open, sesame! Graphene nanoribbons (GNRs) with smooth edges and controllable widths are crucial for graphene electronic and spintronic applications. High-quality narrow GNRs can be synthesized from single-walled carbon nanotubes at 200-300?°C using a Cu-atom catalyst, which dramatically reduces the energy barrier of unzipping from 3.11 to 1.16?eV.  相似文献   

14.
Kazemi  Maryam  Niazi  Ali  Yazdanipour  Atisa 《Chromatographia》2021,84(6):559-569

Multiwalled carbon nanotubes were exposed to hydrothermal treatment for obtaining graphene oxide nanoribbons (GONRs). The fabricated graphene oxide nanoribbons have been morphologically and compositionally characterized via FE-SEM, XRD, and FT-IR techniques. The as-synthesized GONRs have been used as sorbent phase for headspace solid-phase microextraction of phthalate esters (PEs) from aqueous solutions. In this regard, the GC–FID analysis route has been used for quantification of PEs. The new SPME fiber shows remarkable analytical figures of merit including broad dynamic linear ranges, low limits of detection, as well as good stability and reasonable relative standard deviations for evaluation of PEs. The linearity of the method for analysis of PEs including DnBP, DnPP, DEHP, DEHA, BBP, and DMP was between the range of 0.05–100, 0.05–100, 0.1–100, 0.1–100, 0.2–100, and 0.5–100 μg L?1, respectively. The limits of detection (based on S/N?=?3) and correlation coefficients were found to be in the range of 0.02–0.2 μg L?1 and 0.9907–0.9952, correspondingly. The prepared GONR-coated SPME fiber shows larger extraction yield in comparison to pristine MWNTs and commercial PDMS SPME fibers. Furthermore, real sample analysis showed that there is no significant matrix effect for evaluation of PEs from environmental water samples and proposed method could be used for evaluation and determination of PEs from aqueous samples in a precise and accurate manner. The existence of functional groups, π–π interactions, as well as hydrogen bonding between adsorbent phase and PE analytes could be the reason for observing such a high extraction yield.

  相似文献   

15.
Selective graphene growth on copper twin crystals by chemical vapor deposition has been achieved. Graphene ribbons can be formed only on narrow twin crystal regions with a (001) or high-index surface sandwiched between Cu crystals having (111) surfaces by tuning the growth conditions, especially by controlling the partial pressure of CH(4) in Ar/H(2) carrier gas. At a relatively low CH(4) pressure, graphene nucleation at steps on Cu (111) surfaces is suppressed, and graphene is preferentially nucleated and formed on twin crystal regions. Graphene ribbons as narrow as ~100 nm have been obtained in experiments. The preferential graphene nucleation and formation seem to be caused primarily by a difference in surface-dependent adsorption energies of reactants, which has been estimated by first principles calculations. Concentrations of reactants on a Cu surface have also been analyzed by solving a diffusion equation that qualitatively explains our experimental observations of the preferential graphene nucleation. Our findings may lead to self-organizing formation of graphene nanoribbons without reliance on top-down approaches in the future.  相似文献   

16.
Encapsulation of coronene inside single‐walled carbon nanotubes (SWNTs) was studied under various conditions. Under high vacuum, two main types of molecular encapsulation were observed by using transmission electron microscopy: coronene dimers and molecular stacking columns perpendicular or tilted (45–60°) with regard to the axis of the SWNTs. A relatively small number of short nanoribbons or polymerized coronene molecular chains were observed. However, experiments performed under an argon atmosphere (0.17 MPa) revealed reactions between the coronene molecules and the formation of hydrogen‐terminated graphene nanoribbons. It was also observed that the morphology of the encapsulated products depend on the diameter of the SWNTs. The experimental results are explained by using density functional theory calculations through the energies of the coronene molecules inside the SWNTs, which depend on the orientation of the molecules and the diameter of the tubes.  相似文献   

17.

A functional graphene oxide nanoribbons/manganese dioxide composite material (MnO2-GONRs) was synthesized by hydrothermal method using graphene oxide nanoribbons (GONRs) as raw material which were formed by longitudinal unzipping of multi-walled carbon nanotubes with KMnO4 and H2SO4. The microstructure of MnO2-GONRs was characterized by SEM and FT-IR. The various factors affecting the adsorption of Th(IV) in aqueous solution such as pH, solid–liquid ratio, contact time, initial concentration and temperature were investigated by batch static adsorption experiments, and the adsorption mechanism is also discussed. The results showed that MnO2-GONRs had a good adsorption effect on Th(IV) with a maximum adsorption of 166.11 mg/g.

  相似文献   

18.
Triple-walled carbon nanotubes (TWNTs) with three concentric cylindrical graphene layers have been selectively synthesized for the first time from decomposition of ferrocene encapsulated inside double-walled carbon nanotubes, and were identified by high-resolution transmission electron microscopy (HRTEM) and Raman spectroscopy; HRTEM observations reveal that the formation of inner tubes of TWNTs follows a base-growth mechanism.  相似文献   

19.
Within the context of nanoelectronics, general strategies for the development of electronically tunable and air stable graphene nanoribbons are crucial. Previous studies towards the goal of processable nanoribbons have been complicated by ambient condition instability, insolubility arising from aggregation, or poor cyclization yield due to electron deficiency. Herein, we present a general strategy for the elongation of smaller graphene nanoribbon fragments into air-stable, easily processed, and electronically tunable nanoribbons. This strategy is facilitated by the incorporation of electron-rich donor units between electron-poor acceptor perylene diimide oligomeric units. The ribbons are processed in solution via a visible-light flow photocyclization using LEDs. The resulting long nanoribbons can be solution-cast and imaged, which are necessary characteristics for device fabrication. The ribbons become conductive after thermolysis of the pendent side-chains. The electron-accepting character of these nanoribbons in solution is reversible, and the conductivity of the thermolyzed species as a solid remains stable. This work highlights our general strategy for the mild and reliable fabrication of tunable and ambient-stable graphene nanoribbons, and charts a straightforward route for facile device incorporation.

A strategy is shown for the elongation of graphene nanoribbon (GNR) fragments into air-stable, solution processable and electronically tunable GNRs, aided by incorporating electron-rich donor units between electron-poor oligomeric acceptor units.  相似文献   

20.
In this paper we study the effect of absorption peak correlation in finite length carbon nanotubes and graphene nanoribbons. It is shown, in the orthogonal π-orbital tight-binding model with the nearest neighbor approximation, that if the ribbon width is a half of the tube circumference the effect takes place for all achiral ribbons (zigzag, armchair and bearded), and corresponding tubes, starting from lengths of about 30?nm. This correlation should be useful in designing nanoribbon-based optoelectronics devices fully integrated into a single layer of graphene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号