首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A numerical simulation and a comparative analysis of the acoustic fields produced by two-dimensional phased arrays intended for ultrasonic surgery are performed for the case of a multiple focus (in particular, 25 foci) generation. The calculations were conducted for arrays (with an operating frequency of 1.5 MHz) consisting of 256 elements 5 mm in diameter, which were positioned on the array surface both regularly and randomly. The array foci can be formed simultaneously, but, in this case, the intensity levels of the secondary peaks in the ultrasonic field can exceed the values that guarantee the safe application of this method in surgery. A much safer way is to synthesize many foci with the use of several configurations, each of which contains a smaller number of foci. The number of foci in individual configurations must be approximately the same. It is demonstrated that randomization of the element distribution over the array surface provides an opportunity to improve the array performance, to reduce the intensity levels of secondary peaks in the acoustic field, and to increase the array capability for multiple focus scanning off the array axis.  相似文献   

2.
The effect of array geometry on the steering performance of ultrasound phased arrays is examined theoretically, in order to maximize array performance under the given anatomical constraints. This paper evaluates the performance of arrays with spherical and cylindrical geometry, determined by using computer simulations of the pressure fields produced at various extremes of steering. The spherical segment arrays were truncated for insertion into the rectum, and contained either annular or linear elements. The cylindrical arrays were either flat or had a variable curvature applied along their length. Fields were computed by dividing the array elements into many point sources. The effectiveness of an array configuration when steered to a particular focal location was assessed by defining a parameter, G, as the ratio of the intensity at the desired focus to the maximum intensity of any unwanted lobes. The performance of truncated spherical arrays with annular elements was evaluated for focal steering along the array axis (in depth, in the z direction). When steered 15 mm toward the source, these truncated spherical annular arrays exhibited excellent performance, with G>5.7 for arrays containing more than 10 elements. Similarly, the spherical arrays with linear elements performed well when steered along the array axis to the same degree, with G>7 (for element widths up to 3 lambda), though many more array elements were required. However, when these arrays were steered 15 mm laterally, along the length of the prostate (the y direction), the value for G fell below 1 for element widths greater than about 1.6 lambda. It was found that the cylindrical arrays performed much better for y-direction steering (G>4, for 60 mm arrays with an element width of 1.75 lambda), but their performance was poorer when steered in the z direction (G approximately 4 for an element width of 1.5 lambda). In order to find a compromise between these extremes, a curved cylindrical array was examined, which was a cylindrical array with additional curvature along its length. These curved cylindrical arrays yielded performance between that of spherical linear arrays and cylindrical arrays, with better steering along the y direction than the spherical arrays and better z-direction steering than the cylindrical arrays.  相似文献   

3.
Numerical simulation and comparative analysis of acoustic fields generated by two-dimensional phased arrays designed for ultrasonic surgery is conducted. The case of movement of a single focus by an array with the surface shaped as a part of a spherical shell with the curvature radius 120 mm is considered. The influence of the number of elements (varying from 64 to 1024), their diameter (from 2.5 to 10 mm), frequency (from 1 to 2 MHz), and the degree of sparseness of the elements at the array surface on the field characteristics is studied. The calculations are performed for arrays with elements positioned at the surface both regularly (in square, annular, or hexagonal patterns) and randomly. Criteria for the evaluation of the “quality” of intensity distributions in the field generated by an array in the case of movement of a single focus are suggested. Of all arrays studied, the best quality of distributions is obtained for an array containing 256 elements of diameter 5 mm randomly positioned at the array surface. The quality of the intensity distributions for arrays consisting of 255, 256, and 1024 elements positioned regularly (in square, annular, and hexagonal patterns) is inferior to the corresponding quality for arrays with randomly positioned elements. The irregularity in elements’ positioning considerably improves the distribution quality by suppressing the secondary intensity peaks in the field generated by the array; or, alternatively, it provides an opportunity to obtain the same distribution quality with a fraction of the number of elements in the array. The effects of the number and shape of elements, errors in phase setting, frequency modulation of signals, and non-uniform distribution of amplitudes over the array surface on the distribution quality are analyzed.  相似文献   

4.
Numerical simulation and comparative analysis of acoustic fields formed by two-dimensional phased arrays designed for ultrasonic surgery are conducted for the case of scanning by several focuses (in particular, by nine focuses arranged in a line and also by an array of nine focuses forming a 3×3 square grid). Calculations are performed for arrays with elements positioned at the surface both regularly (in square, ring, or hexagonal patterns) and randomly. Criteria for evaluating the “quality” of the intensity distributions in the field formed by the array in the case of scanning by several focuses are proposed. The quality of the intensity distributions for arrays containing 255 and 256 elements 5 mm in diameter arranged in regular patterns on the array’s surface (in square, ring, or hexagonal patterns) is inferior to that for arrays containing 256 randomly positioned elements. Among the regular arrays, the highest quality of intensity distributions is obtained for ring arrays, and the lowest quality is obtained for arrays with elements arranged in square or hexagonal patterns. The irregularity in the element positioning the array’s surface improves the quality of intensity distributions by reducing the secondary intensity peaks in the field formed by the array and, primarily, in the focal plane.  相似文献   

5.
6.
卢超  劳巾洁  戴翔 《声学学报》2014,39(6):714-722
开展了带楔块二维面阵脉冲超声相控阵辐射声场特性的研究。将安装在一定角度斜楔块上二维面阵相控阵换能器声场问题简化为液固界面情况进行讨论。以单阵元在液固平界面条件下的辐射声场为基础,推导了聚焦偏转法则,给出了带楔块二维面阵超声相控阵声场计算方法。以检测材料为钢板,安装在倾斜角为36°有机玻璃楔块上的频率为5 MHz、8×8二维面阵相控阵的辐射声场计算为例,分析了在不同偏转角和不同聚焦深度下检测材料中的辐射声场特性。计算结果表明该方法可有效的分析带楔块二维面阵超声相控阵声场特性并用于指导二维超声面阵角束探头的设计。   相似文献   

7.
超声相控阵在多层媒质中的声场模式优化   总被引:3,自引:0,他引:3       下载免费PDF全文
丁亚军  钱盛友  胡继文  邹孝 《物理学报》2012,61(14):144301-144301
针对超声在多层媒质中的传播特性,引入相位补偿因子并结合遗传算法, 提出了一种可对多层媒质进行声聚焦控制的方法.利用该方法对16×16二维超声相控阵在多层生物媒质中的多焦点声场模式进行了仿真,计算了生物媒质不同厚度层和不同吸收系数时的声场. 结果表明:该方法能优化多焦点声场模式,抑制旁瓣,提高声场增益,将声强最大限度地聚焦在目标区域内; 改变生物组织不同层的厚度和不同层的吸收系数,焦点位置不发生变化,但焦域内的声强会有所变化.  相似文献   

8.
Li F  Feng R  Zhang Q  Bai J  Wang Z 《Ultrasonics》2006,44(Z1):e337-e340
The heated necrotic element created by a single high intensity focused ultrasound exposure can be considered as the foundation of high intensity focused ultrasound ablation of tumour lesions. In this paper, we studied the effects of exposure dose and focal depth in tissue on heated necrotic elements, using numerical simulation and experiment. The acoustic field of one of the transducers for the Model-JC HAIFU focused ultrasound tumour therapeutic system was modeled using O Neill's equation, and then using this information together with Pennes' bio-heat-transfer-equation and finite difference techniques, the heated necrotic element was simulated numerically. The results showed that the theoretical predictions were basically in agreement with the experimental data for low exposures, but that the experimental values suddenly increased with the increasing exposure and exceeded the theoretical predictions. The element volume from the theoretical prediction and experiment for the heated necrotic element decreased with increasing focal depth in tissue for a given exposure, and the theoretical predictions were a little lower than the experimental ones. Therefore, heated necrotic elements created by high intensity focused ultrasound can be well predicted from a knowledge of ultrasonic biophysics theories.  相似文献   

9.
建立了精确的激光触发变压器型脉冲调制器的同步触发系统。分别对脉冲调制器初级电脉冲触发控制信号与电脉冲输出时刻之间、变压器充电起始时刻与激光器Q开关触发信号之间、激光信号与脉冲调制器放电时刻之间的延时进行了测量,并分析其相互间时序关系;通过对变压器输出电压信号进行采样滤波后,利用比较器输出逻辑门电路(TTL)信号作为激光器Q开关触发信号,实现了脉冲形成线充电时间与激光触发主开关放电过程的同步控制。开展了激光触发脉冲功率调制器主开关的实验研究,在形成线充电电压-590 kV时,在假负载上得到-305 kV,20 kA的电脉冲,脉冲宽度126 ns,激光到达主开关时刻与开关导通时刻间延时35 ns。  相似文献   

10.
微纳相控线阵超声换能器参数(阵元数目、阵元宽度及阵元间距)直接影响其横向声场分布,而其横向声场分布是能否实现高成像分辨率、大探测深度的决定性因素,也是制备换能器的主要依据。该文利用数值模拟研究微纳相控线阵超声换能器阵元参数对其横向声场中主瓣强度、-3 dB主瓣宽度、第一级旁瓣及栅瓣的影响。结果表明,主瓣强度随着阵元数目增加而增大,随阵元间距减小而增大,随着阵元宽度的增大呈现先增大后减小的趋势;-3 dB主瓣宽度随着阵元数目和阵元间距的增大而减小,随着阵元宽度的减小而减小;此外,减小阵元数目、减小阵元间距或增大阵元宽度均可以抑制旁瓣;栅瓣在阵元间距满足一定条件时可以完全消除。通过这些研究为微纳相控线阵超声换能器的优化设计与制备提供理论参考。  相似文献   

11.
Methods for the bulk ablation of soft tissue using intense ultrasound, with potential applications in the thermal treatment of focal tumors, are presented. An approximate analytic model for bulk ablation predicts the progress of ablation based on tissue properties, spatially averaged ultrasonic heat deposition, and perfusion. The approximate model allows the prediction of threshold acoustic powers required for ablation in vivo as well as the comparison of cases with different starting temperatures and perfusion characteristics, such as typical in vivo and ex vivo experiments. In a full three-dimensional numerical model, heat deposition from array transducers is computed using the Fresnel approximation and heat transfer in tissue is computed by finite differences, accounting for heating changes caused by boiling and thermal dose-dependent absorption. Similar ablation trends due to perfusion effects are predicted by both the simple analytic model and the full numerical model. Comparisons with experimental results show the efficacy of both models in predicting tissue ablation effects. Phenomena illustrated by the simulations and experiments include power thresholds for in vivo ablation, differences between in vivo and ex vivo lesioning for comparable source conditions, the effect of tissue boiling and absorption changes on ablation depth, and the performance of a continuous rotational scanning method suitable for interstitial bulk ablation of soft tissue.  相似文献   

12.
A new linear ultrasonic phased array fixed on a cylindrical surface is designed. This kind of the cylindrical phased array can meet the specific requirements of the application in testing pipe quality inside pipes. Using the transducer, we can not only avoid mechanical rotating but also test the quality of any point in a pipe by ultrasonic phase array technology. The focused acoustic field distributions in the axial, radial and tangential directions of the transducer are investigated theoretically by numerical simulation. The energy flux density, the width of the main lobe, the imaging resolution, the grating lobe elimination and other characteristics are analysed. The effect of the focal distance, effective aperture, transducer radius, number of total element, and steering angle on the acoustic field distribution is also studied.thoroughly. Many important results are obtained.  相似文献   

13.
The evolution of high-intensity focusing systems for application in medicine has been outlined from their introduction (in the 1950s) to date. This work is in fact a review with two sections. The focusing systems for medical application discussed under the first section are based on using single focusing transducers with a radiating element shaped as a section of a spherical shell. Attention is mainly given to the devices developed at the Andreev Acoustics Institute in the 1970s–1980s; focusing systems developed abroad in the past few decades and most widely clinically used are also briefly discussed there. The second section of the review is devoted to focusing systems based on phased arrays which allow users not only to electronically steer the focus within a selected range, but also, especially importantly for various medical applications, to simultaneously create several foci. The main attention under the second section is given to the two-dimensional phased arrays with randomized location of elements on the surface, which the Acoustics Institute developed in active collaboration with others. It has been shown that irregularity in the location of elements either substantially improves the quality of spatial intensity distributions by reducing the level of secondary maxima of intensity in the array-induced fields or allows to considerably reduce the number of elements in the array with the same quality of distributions. The paper discusses principles of designing such arrays, methods of their calculations and possible applications.  相似文献   

14.
Studies of the stimulating effect of ultrasound on human receptor structures have recently become more intensive in connection with the development of promising robotic techniques and systems, sensors, and automated control systems, as well as with the use of taction in the design of a human-machine interface. One of the promising fields of research is the development of tactile displays for transmission of sensory data to a human by an acoustic method based on the effect of radiation pressure. In this case, it is necessary to generate rapidly changing patterns on a display (symbols, letters, digits, etc.), which may often have a complex shape. It is demonstrated that such patterns can be created by the generation of multiple-focus ultrasonic fields with the help of two-dimensional phased arrays whose elements are randomly positioned on the surface. The parameters for such an array are presented. It is shown that the arrays make it possible to form the regions of action by focused ultrasound with various necessary shapes and the sidelobe (or other secondary peak) intensity level acceptable for practical purposes. Using these arrays, it is possible to move the set of foci off the array axis to a distance of at least ±5 mm, which corresponds to the display dimensions. It is possible, on the screen of a tactile display, to generate the regions of action with a very complex shape, for example, Latin letters. This opportunity may be of interest, for example, for the development of systems that enable a blind person to perceive the displayed text information by using the sense of touch.  相似文献   

15.
电容式微机械超声换能器(cMUT)具有宽带宽、灵敏度高、机械阻抗低和与电子电路集成制造等优点.由于超声换能器声场设计的好坏决定了成像质量的优劣,为了明确阵元参数与辐射声场的关系,该文对不同的阵元参数进行了计算仿真.与压电陶瓷超声换能器的结构不同,cMUT阵元是由多个电容单元(cell)并联构成.因此分析了cell的半径...  相似文献   

16.
Pestova  P. A.  Karzova  M. M.  Yuldashev  P. V.  Kreider  W.  Khokhlova  V. A. 《Acoustical Physics》2021,67(3):250-258

High intensity focused ultrasound (HIFU) treatments typically involve the ablation of tissue volumes comprising multiple focal sites. One aspect of treatment planning involves the definition of a sequence of ultrasound pulses and corresponding focal sites as the sonication trajectory. Here, numerical simulations of the thermal effects of different trajectories are performed for HIFU exposures delivered to an ex vivo bovine liver sample by a clinical array (Sonalleve V2 3.0T system, Profound Medical Corp., Canada). Simulations consider boiling histotripsy regime with millisecond-long pulses that include shocks. Focusing of the ultrasound beam in tissue was modeled by the Westervelt equation, and the temperature field was modeled by the bioheat equation. To explore different treatment strategies, trajectories were considered with discrete foci located along two or four concentric circles with radii from 2 to 8 mm. Two approaches for traversing these focal sites were compared: In the first approach each discrete focus was sonicated by a sequence of 15 pulses before moving to the next site in the trajectory. In the second approach, each focus was sonicated once before moving to the next site, with sonications over the whole trajectory repeated 15 times. The influence of the trajectory’s size and the pulsing strategy on the temperature field was analyzed. It is shown that the structure of the temperature field is more uniform with a longer time interval between repeated irradiation of each focus, and the optimal time interval ranges from three to six pulse repetition periods.

  相似文献   

17.
A noninvasive ultrasound surgery method that relies on using multi-element focused phased arrays is being successfully used to destroy tumors and perform neurosurgical operations in deep structures of the human brain. However, several drawbacks that limit the possibilities of the existing systems in their clinical use have been revealed: a large size of the hemispherical array, impossibility of its mechanical movement relative to the patient’s head, limited volume of dynamic focusing around the center of curvature of the array, and side effect of overheating skull. Here we evaluate the possibility of using arrays of smaller size and aperture angles to achieve shock-wave formation at the focus for thermal and mechanical ablation (histotripsy) of brain tissue taking into account current intensity limitations at the array elements. The proposed approach has potential advantages to mitigate the existing limitations and expand the possibilities of transcranial ultrasound surgery.  相似文献   

18.
In this paper we have developed and evaluated a spherical phased array ultrasound applicator for deep tissue ablation. The 90-element prototype array has a 21 cm aperture and an 18 cm radius of curvature with a 5 cm wide central hole. Annular distribution with circular elements is used to reduce the number of elements. The array is constructed with piezoelectric (PZT-8) circular planar elements that are 1.4 cm in diameter and 0.2-cm thick. With the water-muscle propagation path, the array offers an effective beam focusing depth of at least 8 cm in the muscle layer. Simulation results show that the array provides good beam focusing and steering capability over a cylindrical volume of approximately π × 1 × 1 × 4 cm3 (up to 10 mm off center over ranges from 15 cm to 19 cm). We also present its beam focusing and steering capability in deep tissue through a series of ex vivo experiments by measuring discoloration areas after sonications. The ex vivo experiments show a similar focal range as that found in the simulations.  相似文献   

19.
Ultrasonic phased array technology has been gradually applied to industrial nondestructive testing in recent years. The sound field of the focusing and steering beam radiating from the phased array is a nonuniform distribution in the spatial position so that the echo signals of same size defects will be changed according to defect positions. To analyze these defects quantitatively, a model-based method for the distance amplitude correction is proposed for the phased array system. Based on a non-paraxial multi-Gaussian beam model and flaw scattering models, an ultrasonic measurement model for the phased array system is proposed to calculate the echo signals from side-drilled holes at different positions. Furthermore, these model-based distance amplitude curves are compared with the traditional experimental results for different focusing and steering beams. The two methods have a good agreement.  相似文献   

20.
This paper describes a procedure to extend the crosstalk correction method presented in a previous paper [A. Bybi, S. Grondel, J. Assaad, A.–C. Hladky-Hennion, M. Rguiti, Reducing crosstalk in array structures by controlling the excitation voltage of individual elements: a feasibility study, Ultrasonics, 53 (6) (2013) 1135–1140] from the harmonic regime to the transient one. For this purpose a part of an ultrasonic transducer array radiating in water is modeled around the frequency 0.5 MHz using the finite element method. The study is carried out at low frequency in order to respect the same operating conditions than the previous paper. This choice facilitated the fabrication of the transducer arrays and the comparison of the numerical results with the experimental ones. The modeled array is composed of seventeen elements with the central element excited, while the others are grounded. The matching layers and the backing are not taken into account which limits the crosstalk only to the piezoelectric elements and fluid. This consideration reduces the structure density mesh and results in faster computation time (about 25 min for each configuration using a computer with a processor Intel Core i5-3210M, frequency 2.5 GHz and having 4 Go memory (RAM)).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号