首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The spectral (both absorption and fluorescence) and photoelectrochemical studies of a few selective dyes, namely, anionic erythrosin B, neutral riboflavin and cationic safranin O have been carried out in aqueous solution of triton X-100, a neutral surfactant. The results show that the ionic dyes, erythrosin B and safranin O form 1:1 electron donor-acceptor (EDA) or charge-transfer (CT) complexes with triton X-100 both in the ground and excited states, whereas neutral dye riboflavin in its excited state forms 1:1 complex with triton X-100. In these complexes, the dyes act as electron acceptors whereas triton X-100 acts as an electron donor. The fluorescence spectra of erythrosin B and safranin O in presence of triton X-100 show enhancement of fluorescence intensity with red and blue shifts respectively while riboflavin shows normal quenching of fluorescence. A good correlation has been found among photovoltage generation of the systems consisting of these dyes and triton X-100, spectral shift due to complex formation and thermodynamic properties of these complexes.  相似文献   

2.
The spectroscopic and photophysical properties of N-nonyl acridine orange - a metachromatic dye useful as a mitochondrial probe in living cells - are reported in water and microheterogeneous media: anionic sodium dodecylsulfate (SDS), cationic cetyltrimethylammonium bromide (CTAB) and neutral octylophenylpolyoxyethylene ether (TX-100). The spectral changes of N-nonyl acridine orange were observed in the presence of varying amount of SDS, CTAB and TX-100 and indicated formation of a dye-surfactant complex. The spectral changes were also regarded to be caused by the incorporation of dye molecules to micelles. It was proved by calculated values K(b) and f in the following order: K(bTX-100)>K(bCTAB)>K(bSDS) and f(TX-100)>f(CTAB)>f(SDS). NAO binds to the micelle regardless the micellar charge. There are two types of interactions between NAO and micelles: hydrophobic and electrostatic. The hydrophobic interactions play a dominant role in binding of the dye to neutral TX-100. The unexpected fact of the binding NAO to cationic CTAB can be explained by a dominant role of hydrophobic interactions over electrostatic repulsion. Therefore, the affinity of NAO to CTAB is smaller than TX-100. Electrostatic interactions play an important role in binding of NAO to anionic micelles SDS. We observed a prolonged fluorescence lifetime after formation of the dye-surfactant complex tau(SDS)>tau(TX-100)>tau(CTAB)>tau(water), the dye being protected against water in this environment. TX-100 is found to stabilize the excited state of NAO which is more polar than the ground state. Spectroscopic and photophysical properties of NAO will be helpful for a better understanding of the nature of binding and distribution inside mammalian cells.  相似文献   

3.
Ultraviolet spectrometric study of alizarin red S (ARS) showed the substantial change in dye spectra by cationic CTAB as compared to anionic SDS and nonionic TX-100 surfactant. High spectral change by CTAB confirms the anionic nature of ARS dye and thus ARS-CTAB complex formation takes place due to electrostatic force of attraction. A little spectral change by SDS is the result of similarly charged repulsive forces that overcome weak hydrophobic-hydrophobic interaction between dye and surfactant micelles. TX-100 exhibited moderate spectral effect responsive to weak hydrophobic-hydrophobic interaction alone. MEUF study of ARS dye justified the spectral changes and dye rejection percentage (R) decreases in the following order: cationic > nonionic > anionic surfactant. Permeate flux (J) slightly decreases in presence of CTAB and it remains virtually constant for both SDS and TX-100. Addition of copper salt (i.e., CuCl2) in dye-CTAB complex solution, favors rejection (%) removing dye and copper simultaneously via micellar enhanced ultrafiltration.  相似文献   

4.
The spectroscopic investigation on anionic dye, Erythrosine ‘B’(EB) with three different types of surfactants such as CTAB (cationic), sodium lauryl sulphate (SLS; anionic) and Triton X-100 (TX-100),Tween-20, 40, 60 and 80 (nonionic) in aqueous media shows that EB forms a 1:1 molecular complex with TX-100, Tweens and CTAB. No interaction is observed between EB and SLS. The thermodynamic and spectrophotometric properties of these complexes suggest that EB forms a strong charge transfer (CT) complex with TX-100 and Tweens whereas the interaction of EB with CTAB is coulombic in nature. Photogalvanic and photoconductometric studies also support the above interactions. In addition to this, the electron-donating ability among the nonionic surfactants, i.e. TX-100 and Tweens towards dye, role of surface in CT interaction, the site of CT interaction and the intensity and stability of CT interaction between EB and nonionic surfactants have been pointed out.  相似文献   

5.
The spectrophotometric studies of safranin-T (Saf-T) dye in an aqueous solution containing three different types of surfactants such as CTAB (cationic), SLS (anionic) and Triton X-100 (TX-100), Tween-20, 40, 60 and 80 (nonionic) show that Saf-T forms a 1:1 molecular complex with TX-100, Tweens and SLS. Such a type of interaction is absent in Saf-T and CTAB. The thermodynamic and spectrophotometric properties of these complexes suggest that Saf-T forms a strong charge transfer (CT) complex with TX-100 and Tweens, whereas the interaction of Saf-T with SLS is coulombic in nature. Photogalvanic and photoconductometric studies also support the above interactions. In addition to this, the electron-donating ability among the nonionic surfactants i.e. TX-100 and Tweens towards dye, role of surface in CT interaction, the site of CT interaction and the intensity and stability of CT interaction between Saf-T and nonionic surfactants have been pointed out.  相似文献   

6.
Photoinduced electron transfer (ET) between coumarin dyes and aromatic amine has been investigated in two cationic micelles, namely, cetyltrimethyl ammonium bromide (CTAB) and dodecyltrimethyl ammonium bromide (DTAB), and the results have been compared with those observed earlier in sodium dodecyl sulphate (SDS) and triton-X-100 (TX-100) micelles for similar donor-acceptor pairs. Due to a reasonably high effective concentration of the amines in the micellar Stern layer, the steady-state fluorescence results show significant static quenching. In the time-resolved (TR) measurements with subnanosecond time resolution, contribution from static quenching is avoided. Correlations of the dynamic quenching constants (k(q) (TR)), as estimated from the TR measurements, show the typical bell-shaped curves with the free-energy changes (DeltaG(0)) of the ET reactions, as predicted by the Marcus outersphere ET theory. Comparing present results with those obtained earlier for similar coumarin-amine systems in SDS and TX-100 micelles, it is seen that the inversion in the present micelles occurs at an exergonicity (-DeltaG(0)> approximately 1.2-1.3 eV) much higher than that observed in SDS and TX-100 micelles (-DeltaG(0)> approximately 0.7 eV), which has been rationalized based on the relative propensities of the ET and solvation rates in different micelles. In CTAB and DTAB micelles, the k(q) (TR) values are lower than the solvation rates, which result in the full contribution of the solvent reorganization energy (lambda(s)) towards the activation barrier for the ET reaction. Contrary to this, in SDS and TX-100 micelles, k(q) (TR) values are either higher or comparable with the solvation rates, causing only a partial contribution of lambda(s) in these cases. Thus, Marcus inversion in present cationic micelles is inferred to be the true inversion, whereas that in the anionic SDS and neutral TX-100 micelles are understood to be the apparent inversion, as envisaged from two-dimensional ET theory.  相似文献   

7.
The absorption spectra of phenazine dyes such as phenosafranin (PSF), safranin-O (Saf-O), and safranin-T (Saf-T) in aqueous solution of Triton X-100 (TX-100) show that phenazine dyes form 1:1 charge-transfer (CT) or electron-donor-acceptor (EDA) complex with TX-100. The photogalvanic and photoconductivity studies also support the above interaction. From the thermodynamic, spectrophotometric and photophysical parameters of these complexes, the abilities of dyes to accept electron are found to be in the order: PSF > Saf-O > Saf-T. There is a good correlation among the spectral and thermodynamic properties of these complexes.  相似文献   

8.
考察了4种含有不同N位取代基的对称吲哚方酸菁染料在阳离子表面活性剂十六烷基三甲基溴化铵(CTAB)、阴离子表面活性剂十二烷基硫酸钠(SDS)和非离子表面活性剂曲拉通(TX-100)水溶液中的光降解行为,结果表明,表面活性剂对染料分子具有保护作用,其影响大小为CTAB>TX-100>SDS,分子中有羧基的染料受影响程度最大。在表面活性剂浓度较低时,染料光降解程度随着表面活性剂浓度的增加而增加,但形成胶束后,染料的光降解程度则随着表面活性剂浓度的升高而降低。  相似文献   

9.
The primary steps of photoinduced electron transfer (PET) from N,N-dimethylaniline (DMA) to five coumarin dyes are studied in an anionic micelle [sodium dodecyl sulfate (SDS)] and a neutral micelle [triton X-100 (TX-100)] using femtosecond upconversion. The rate of PET in micelle is found to be highly nonexponential. In both the micelles, PET displays components much faster (approximately 10 ps) than the slow components (180-2900 ps) of solvation dynamics. The ultrafast components of electron transfer exhibit a bell-shaped dependence on the free energy change. This is similar to Marcus inversion. The rates of PET in TX-100 and SDS micelle are, in general, faster than those in cetyltrimethylammonium bromide (CTAB) micelle. In the SDS and TX-100 micelle, the Marcus inversion occurs at -DeltaG0 approximately 0.7 eV which is lower than that (approximately 1.2 eV) in CTAB micelle. Possible causes of variation of PET in different micelles are discussed.  相似文献   

10.
The absorption spectra of several thiazine dyes such as thionine, azure A, azure B, azure C and methylene blue in aqueous solution of Triton X-100 show that dyes as electron acceptors form 11 charge-transfer (CT) or electron-donor-acceptor (EDA) complexes with Triton X-100, which acts as an electron donor. From the thermodynamic and spectrophotometric properties of these complexes, the abilities of dyes to accept an electron are in the order: azure C > thionine > azure A > azure B > methylene blue. The photogalvanic effect in the aqueous solution dye-surfactant has been studied. Generation of photovoltage supports a CT or EDA interaction between thiazine dyes and Triton X-100. There is a good correlation among the photophysical (photovoltage), spectral and thermodynamic properties of these complexes.  相似文献   

11.
The fluorescence spectra of Merocyanine 540 (MC 540), an anionic dye have been studied in aqueous solution of different nonionic surfactants. The results show the enhancement and red shift of fluorescence bands, indicating electron transfer from the surfactants to the excited dye. This is also supported by the photovoltage generation by the dye-surfactant systems in a photoelectrochemical cell. Possible mechanisms of the excited state interaction and photovoltage generation have been suggested. From the thermodynamic, spectrophotometric and photogalvanic results, it can be concluded that the electron donating abilities of the nonionic surfactants towards MC 540 are in the order: Tween 80 approximately Tween 60>Tween 40>Tween 20>Triton X-100. The spectral studies (both absorption and fluorescence) of Merocyanine 540 have been carried out in solvents of varying polarities as well as in an aqueous micellar dispersions of nonionic surfactants. The Stokes shifts of the fluorescence from the absorption have been found to increase with increasing polarity of the solvents. An attempt has been made to ascertain the polarity of the microenvironment of Merocyanine 540 in the nonionic surfactant media from the photophysical characteristics of the dye in different solvents of known polarities.  相似文献   

12.
The absorption and fluorescence spectra of 2-(2'-aminophenyl)benzimidazole (2-APBI) have been studied in anionic (sodium dodecylsulphate, SDS), cationic (cetyltrimethylammonium bromide, CTAB) and non-ionic micelles (Tween-80, TritonX-100) at different acid-base concentrations. Spectral characteristics of 2-APBI at various acid concentrations have established only one kind of monocation (MC) in Tween-80 and TritonX-100 (TX-100), whereas two kinds of MCs are present in SDS. Above study has further shown that there is a strong hydrogen bonding interaction between the polar polyoxyethylene groups of non-ionic micelles and the MCs of 2-APBI. This interaction is responsible for the stabilization of the MC III to MC III' which is more planar than either MC II or MC III, which is otherwise less stable in water. This is substantiated by the lifetime data, fluorescence excitation spectra and the pKa values of the monocation-neutral (MC-N) equilibrium.  相似文献   

13.
Effect of the micelles of anionic, cationic and non-ionic surfactants on the fluorescence quenching of 1- and 2-naphthols has been studied in the presence of copper ion. The excited state lifetime, dynamic and static quenching constants for these systems have been determined. Fluorescence quenching in water and SDS micelle is due to the collision of the fluorophore with the quencher with a small static component. The negatively charged naphtholate ions in the excited state are quenched with significantly higher rates than the neutral naphthol molecules, which are located further inside the mesophase. CTAB micelle is less effective than the SDS micelle for fluorescence quenching. The effect of CTAB on water-assisted excited-state deprotonation has been investigated in the presence of ZnSO4. For TX-100 micelle there is negligible quenching even at higher concentration of the quencher.  相似文献   

14.
The adsorption of non-ionic polysaccharide—guar gum (GG) in the presence or absence of the surfactants: anionic SDS, cationic CTAB, nonionic TX-100 and their equimolar mixtures SDS/TX-100, CTAB/TX-100 from the electrolyte solutions (NaCl, CaCl2) on the manganese dioxide surface (MnO2) was studied. The increase of GG adsorption amount in the presence of surfactants was observed in every measured system. This increase results from formation of complexes between the GG and the surfactant molecules. This observation was confirmed by the determination of the influence of GG on surfactants adsorption on the MnO2 surface. The increase of GG adsorption on MnO2 was the largest in the presence of the surfactant mixtures (CTAB/TX-100; SDS/TX-100) which is the evidence of the synergetic effect. The smallest amounts of adsorption were obtained in the presence of TX-100, which results from non-ionic character of this surface active agent. In the case of single surfactant solution CTAB has the best efficiency in increasing the amount of GG adsorption on MnO2 which results from strong interactions with GG and also with the negatively charged surface of the adsorbent. In order to determine the electrokinetic properties of the system, the surface charge density of MnO2 and the zeta potential measurements were performed in the presence of the GG macromolecules and the above mentioned surfactants and their mixtures. The obtained data showed that the adsorption of GG or GG/surfactants complexes on the manganese dioxide surface strongly influences the diffused part of the electrical double layer (EDL)—MnO2/electrolyte solution, but has no influence on the compact part of the electric double layer. This is the evidence that the polymers chains are directly bonded with the surface of the solid and the surfactants molecules are present in the upper part of the EDL.  相似文献   

15.
The spectroscopic and photophysical properties of N-nonyl acridine orange – a metachromatic dye useful as a mitochondrial probe in living cells – are reported in water and microheterogeneous media: anionic sodium dodecylsulfate (SDS), cationic cetyltrimethylammonium bromide (CTAB) and neutral octylophenylpolyoxyethylene ether (TX-100). The spectral changes of N-nonyl acridine orange were observed in the presence of varying amount of SDS, CTAB and TX-100 and indicated formation of a dye–surfactant complex. The spectral changes were also regarded to be caused by the incorporation of dye molecules to micelles. It was proved by calculated values Kb and f in the following order: Kb TX-100 > Kb CTAB > Kb SDS and fTX-100 > fCTAB > fSDS. NAO binds to the micelle regardless the micellar charge. There are two types of interactions between NAO and micelles: hydrophobic and electrostatic. The hydrophobic interactions play a dominant role in binding of the dye to neutral TX-100. The unexpected fact of the binding NAO to cationic CTAB can be explained by a dominant role of hydrophobic interactions over electrostatic repulsion. Therefore, the affinity of NAO to CTAB is smaller than TX-100. Electrostatic interactions play an important role in binding of NAO to anionic micelles SDS. We observed a prolonged fluorescence lifetime after formation of the dye–surfactant complex τSDS > τTX-100 > τCTAB > τwater, the dye being protected against water in this environment. TX-100 is found to stabilize the excited state of NAO which is more polar than the ground state. Spectroscopic and photophysical properties of NAO will be helpful for a better understanding of the nature of binding and distribution inside mammalian cells.  相似文献   

16.
Four octahedral iron(III) complexes of the type [Fe(L)Cl(3)], where L is a tridentate 3N ligand like N,N-bis(pyrid-2-ylmethyl)amine (bpa, L1), N,N-bis(benzimidazol-2-ylmethyl)amine (bba, L2), 1,4,7-triazacyclononane (tacn, L3) and 2,2';6',2'-terpyridine (terpy, L4), have been isolated and their catechol dioxygenase activity investigated in dichloromethane, water and different aqueous micellar media. The positions of both the catecholato-to-iron(III) LMCT bands observed for the DBC(2-) (H(2)DBC = 3,5-di-tert-butylcatechol) adducts reveal that the adducts are present as cationic [Fe(L)(DBC)(H(2)O)](+) species, which interact strongly with anionic SDS micelles and dock themselves on the anionic micellar surface, and that they exist in the aqueous phase in CTAB and TX 100 micelles. The Fe(III)/Fe(II) redox potentials of the complexes throw light on the Lewis acidity of the iron(III) center as modified by the ligand donor atoms and hence the interaction of the complexes with different micelles. The DBSQ/DBC(2-) redox potentials in SDS micellar media are more positive than those in aqueous solution confirming the presence of the aqua species [Fe(L)(DBC)(H(2)O)](+). The DBC(2-) adducts of the iron(III) complexes of bpa, bba and tacn ligands, all with facial coordination, elicit extradiol (E) cleavage to different extents while the adduct of the terpy complex with meridional coordination of the ligand shows always intradiol (I) cleavage. It is remarkable that the bpa complex shows the highest yield of extradiol product and high product selectivity in aqueous SDS solution (E, 84.0%; E/I, 61.0?:?1) and in SDS?:?n-hexane reverse micellar medium (E, 93.7%) illustrating that a vacant or solvent coordinated site is essential for observing extradiol cleavage. Interestingly, the rates of dioxygenase reactions in aqueous and aqueous micellar solutions are significantly higher than those in non-aqueous solvents. Also, they diminish in the order, SDS > TX-100 > CTAB, illustrating the facile substitution of coordinated water molecule by molecular oxygen in [Fe(L)(DBC)(H(2)O)](+) bound to anionic SDS micelles.  相似文献   

17.
The fluorescence decays of safranine T were studied in different homogeneous solvents and heterogeneous micellar solutions. It has been found that micellization leads to an increase in the lifetime. The lifetime distributions were studied in micelles and homogeneous media. It was found that the different half-width distributions of the dye in different micelles are related to the different orientation of the dye in different micelles. Also, the fluorescence quenching of safranine T by 4,6-disubstituted-3-cyanopyridin-2(1H)-thiones was studied in chloroform, methanol and acetonitrile as well as in different micelles. In heterogeneous media the kq values for quenching of safranine T by thiones in various micelles increase on the following order: kq(CTAB) < kq(TX-100) < kq(SDS). This is due to the electrostatic interactions between the anionic SDS and the cationic moiety of safranine T and therefore the quenching process will be less significant.  相似文献   

18.
Stability of the manganese dioxide (MnO2) suspensions by non-ionic guar gum (GG) in the absence or presence of the surfactants: anionic sodium dodecyl sulphate (SDS), cationic hexadecyltrimethylammonium bromide (CTAB) and non-ionic Triton X-100 (t-octylphenoxypolyethoxyethanol) and their equimolar mixtures (SDS/TX-100; CTAB/TX-100) was measured using turbidity. The obtained results of the manganese dioxide suspensions stability were discussed together with the adsorption data and with the data concerning the thicknesses of the adsorption layers. In order to gain more information about the structure of the electric double layer surface charge density and the zeta potential measurements were performed. The obtained results show that the addition of guar gum to the MnO2 suspensions increases MnO2 stability. The larger this increase is, the higher is the concentration of the polymer (concentration range 10–200 ppm). Moreover, the addition of single surfactants also causes the increase in the effectiveness of stabilizing the manganese dioxide suspensions. The reason for that is formation of multilayer complexes between the polymer and the surfactants. In such a system both the adsorption of polymer and the thickness of polymer adsorption layer increase. The greatest increase in the stability of MnO2/GG suspensions was provided by the mixture of anionic and non-ionic surfactants due to a strong synergistic effect. Also, mixing the polymer and two surfactants reduces the stability of the suspension.  相似文献   

19.
The interaction in two mixtures of a nonionic surfactant Triton-X-100 (TX-100) and different ionic surfactants was investigated. The two mixtures were TX-100/sodium dodecyl sulfate (SDS) and TX-100/cetyltrimethylammonium bromide (CTAB) at molar fraction of TX-100, αTX-100 = 0.6. The surface properties of the surfactants, critical micelle concentration (CMC), effectiveness of surface tension reduction (γCMC), maximum surface excess concentration (Γmax), and minimum area per molecule at the air/solution interface (A min) were determined for both individual surfactants and their mixtures. The significant deviations from ideal behavior (attractive interactions) of the nonionic/ionic surfactant mixtures were also determined. Mixtures of both TX-100/SDS and TX-100/CTAB exhibited synergism in surface tension reduction efficiency and mixed micelle formation, but neither exhibited synergism in surface tension reduction effectiveness.  相似文献   

20.
The photophysical behavior of 3-pyrazolyl-2-pyrazoline derivative (PZ), a newly synthesized biologically active compound has been studied in micellar solutions of anionic sodium dodecyl sulfate (SDS), cationic cetyl trimethylammonium bromide (CTAB) and nonionic p- tert-octylphenoxy polyoxyethanol (Triton X-100, TX-100) micelle using steady state and time-resolved fluorescence spectroscopy technique. Influence of the micelles on the photophysics of PZ has also been investigated using different approaches. The location of the fluorophore PZ in the micelle has been identified by cetyl pyridinium chloride (CpCl) induced fluorescence quenching and micropolarity surrounding that fluorophore in micellar solution. The effect of urea on the steady state fluorescence and relaxation dynamics of the micelle bound probe has also been observed. The results have been interpreted in terms of the model that urea displaces water molecules from the micellar interface and the consequent destabilization leads to the expulsion of the probe molecules from the interfacial region. An attempt has been made to determine probe sensing microviscosities for these micellar microenvironments in the light of average reorientation times of the probe PZ.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号