首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The modulational instability problem is reformulated by the amplitude expansion method. A generalized version of the Stewartson-Stuart equation is derived, which is applicable to any supercritical state as long as the amplitude of the disturbance is small. The modulational instability of plane waves in a two-dimensional jet and wake is investigated on the basis of this equation, and it is found that the plane waves are stable to side-band disturbances in supercritical states except in the close neighbourhood of the critical state.  相似文献   

2.
The aim of this work is to show the possibility of non-intrusively exciting second-mode instability waves with arbitrary frequency and amplitude in a hypersonic, planar boundary layer, by means of optical methods. Surface heat flux sensors were used to measure natural and artificially excited instability waves on a flat plate at zero angle of attack. The measurements were made using a stream-wise array of flush-mounted high-frequency heat flux sensors. In addition, surface pressure sensors were applied and show the instability waves, as well. The possibility to generate such waves by locally heating the model surface is shown.  相似文献   

3.
The dynamics and energetics of a frontal collision of internal solitary waves (ISW) of first mode in a fluid with two homogeneous layers separated by a thin interfacial layer are studied numerically within the framework of the Navier–Stokes equations for stratified fluid. It was shown that the head-on collision of internal solitary waves of small and moderate amplitude results in a small phase shift and in the generation of dispersive wave train travelling behind the transmitted solitary wave. The phase shift grows as amplitudes of the interacting waves increase. The maximum run-up amplitude during the wave collision reaches a value larger than the sum of the amplitudes of the incident solitary waves. The excess of the maximum run-up amplitude over the sum of the amplitudes of the colliding waves grows with the increasing amplitude of interacting waves of small and moderate amplitudes whereas it decreases for colliding waves of large amplitude. Unlike the waves of small and moderate amplitudes collision of ISWs of large amplitude was accompanied by shear instability and the formation of Kelvin–Helmholtz (KH) vortices in the interface layer, however, subsequently waves again become stable. The loss of energy due to the KH instability does not exceed 5%–6%. An interaction of large amplitude ISW with even small amplitude ISW can trigger instability of larger wave and development of KH billows in larger wave. When smaller wave amplitude increases the wave interaction was accompanied by KH instability of both waves.  相似文献   

4.
针对规则波浪在强逆流作用下的阻塞现象进行实验研究,给出了不同波况下的波高与周期沿水槽的变化.实验结果表明,波浪的频率越低,所需的阻塞流速越强;波幅离散对阻塞的影响很大,不能被忽略;对于较大的入射波高,边带不稳定性会使波浪发生频率下移,进而增大阻塞所需的流速.  相似文献   

5.
Stability of periodic waves of finite amplitude on the surface of a deep fluid   总被引:22,自引:0,他引:22  
We study the stability of steady nonlinear waves on the surface of an infinitely deep fluid [1, 2]. In section 1, the equations of hydrodynamics for an ideal fluid with a free surface are transformed to canonical variables: the shape of the surface (r, t) and the hydrodynamic potential (r, t) at the surface are expressed in terms of these variables. By introducing canonical variables, we can consider the problem of the stability of surface waves as part of the more general problem of nonlinear waves in media with dispersion [3,4]. The resuits of the rest of the paper are also easily applicable to the general case.In section 2, using a method similar to van der Pohl's method, we obtain simplified equations describing nonlinear waves in the small amplitude approximation. These equations are particularly simple if we assume that the wave packet is narrow. The equations have an exact solution which approximates a periodic wave of finite amplitude.In section 3 we investigate the instability of periodic waves of finite amplitude. Instabilities of two types are found. The first type of instability is destructive instability, similar to the destructive instability of waves in a plasma [5, 6], In this type of instability, a pair of waves is simultaneously excited, the sum of the frequencies of which is a multiple of the frequency of the original wave. The most rapid destructive instability occurs for capillary waves and the slowest for gravitational waves. The second type of instability is the negative-pressure type, which arises because of the dependence of the nonlinear wave velocity on the amplitude; this results in an unbounded increase in the percentage modulation of the wave. This type of instability occurs for nonlinear waves through any media in which the sign of the second derivative in the dispersion law with respect to the wave number (d2/dk2) is different from the sign of the frequency shift due to the nonlinearity.As announced by A. N. Litvak and V. I. Talanov [7], this type of instability was independently observed for nonlinear electromagnetic waves.The author wishes to thank L. V. Ovsyannikov and R. Z. Sagdeev for fruitful discussions.  相似文献   

6.
Streamwise streaks generated from a pair of oblique waves and secondary instability of the streaks are studied in a two-dimensional bent channel. Nonlinear parabolized stability equations (NPSE) are employed to investigate streamwise streaks and vortices. A pair of oblique waves from linear stability analysis is imposed as initial disturbances. Generation of streamwise streaks and vortices and subsequent development are described in detail. The case of plane channel is also studied to provide comparable data. Through comparison, the effect of bent region is clearly highlighted. Results of parametric studies to examine the effect of Reynolds number, radius of curvature, and bent angle are also given and discussed in detail. Secondary instability analysis for the modified mean flow due to the streamwise streaks is carried out by solving a two-dimensional eigenvalue problem. Several unstable modes which can be classified into fundamental and subharmonic mode of secondary instability are identified. Among several unstable modes, two modes are turned out to be dominant modes. Details on these two modes including generation mechanism, typical pattern, and dependency on wave number and streak amplitude are discussed. It is found that the presence of bent channel can lead to early oblique-mode breakdown via strong growth of the streamwise streaks due to the curved section. Such large amplitude of streaks and its secondary instability eventually could trigger transition even for small amplitude oblique waves at subcritical channel Reynolds numbers.  相似文献   

7.
The effect of leading radiation on the stability of a strong shock wave in an ideal gas with an arbitrary equation of state is investigated. The ionization ahead of and behind the shock front and the radiation are assumed to be in equilibrium. The investigation is carried out in the linear approximation with respect to amplitude for disturbances with a wavelength much greater than the width of the relaxation zones ahead of and behind the shock. The conditions under which the leading radiation has a destabilizing effect on the shock wave are established. It is shown, in particular, that neutrally stable shock waves become unstable. The conditions under which the onset of instability is of the threshold type with respect to the radiation intensity are determined. It is found that the radiation also has a destabilizing effect on stable shock waves, including shock waves in a perfect gas. However, in this case instability can develop only when the disturbances have a wavelength comparable with the width of the relaxation zone. A simple physical mechanism of the onset of instability under the influence of leading radiation is proposed.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 3, pp. 125–133, May–June, 1990.The authors are grateful to A. G. Kulikovskii and A. A. Barmin for their constant interest and useful discussions.  相似文献   

8.
The instability and regular nonlinear waves in the film of a heavy viscous liquid flowing along the wall of a round tube and interacting with a gas flow are investigated. The solutions for the wave film flows are numerically obtained in the regimes from free flow-down in a counter-current gas stream to cocurrent upward flow of the film and the gas at fairly large gas velocities. Continuous transition from the counter-current to the cocurrent flow via the state with a maximum amplitude of nonlinear waves and zero values of the liquid flow rate and the phase velocity is investigated. The Kapitsa-Shkadov method is used to reduce a boundary value problem to a system of evolutionary equations for the local values of the layer thickness and the liquid flow rate.  相似文献   

9.
Pure gravity waves of finite amplitude in infinitely deep water are unstable to small disturbances in the form of modulated side-bands (Benjamin-Feir instability). These disturbances will undergo unbounded magnification if the parameter Ω associated with the frequency of the side-bands lies in the range 0<Ω<√2 ka, where k and a are the wavenumber and amplitude of the basic wavetrain. The present paper is devoted to studying the situation for capillary-gravity waves. It is shown that the corresponding range of Ω, for which instability can arise, is smaller, see eq. 4.17, than for the pure gravity wave situation. Even pure capillary waves admit instabilities.  相似文献   

10.
A parametric study is presented for the incompressible, zero-pressure-gradient flat-plate boundary layer perturbed by streamwise vortices. The vortices are placed near the leading edge and model the vortices induced by miniature vortex generators (MVGs), which consist in a spanwise-periodic array of small winglet pairs. The introduction of MVGs has been experimentally proved to be a successful passive flow control strategy for delaying laminar-turbulent transition caused by Tollmien–Schlichting (TS) waves. The counter-rotating vortex pairs induce non-modal, transient growth that leads to a streaky boundary layer flow. The initial intensity of the vortices and their wall-normal distances to the plate wall are varied with the aim of finding the most effective location for streak generation and the effect on the instability characteristics of the perturbed flow. The study includes the solution of the three-dimensional, stationary, streaky boundary layer flows by using the boundary region equations, and the three-dimensional instability analysis of the resulting basic flows by using the plane-marching parabolized stability equations. Depending on the initial circulation and positioning of the vortices, planar TS waves are stabilized by the presence of the streaks, resulting in a reduction in the region of instability and shrink of the neutral stability curve. For a fixed maximum streak amplitude below the threshold for secondary instability (SI), the most effective wall-normal distance for the formation of the streaks is found to also offer the most stabilization of TS waves. By setting a maximum streak amplitude above the threshold for SI, sinuous shear layer modes become unstable, as well as another instability mode that is amplified in a narrow region near the vortex inlet position.  相似文献   

11.
The questions of a dynamical stability and instability of soliton-like solutions (solitary pulses) of the Hamiltonian equations, describing planar waves in nonlinear elastic composites are considered, both in the presence as well as in the absence of the anisotropy. In the anisotropic case one has the slow and the fast two-parametric soliton families on the background of the quiescent state. In the absence of the anisotropy these two families coalesce into the unique three parametric family. It was shown recently that solitary pulses of the slow family in the anisotropic composite and pulses in the isotropic composite are stable when their speeds lie inside a certain range, the so-called range of stability. In the present paper, on the basis of numerical solving of the Cauchy problem for the basic governing equations, the classification is given of the types of instability of solitary pulses from the fast family for all range of speeds as well as in the case of the slow family and in the isotropic case, when the speeds of the pulses lie without the range of stability. The first type of instability is the blow-up instability for the slow anisotropic and isotropic pulses, living without the range of stability and also for high amplitude fast anisotropic pulses. The second type of instability is the instability resulting in energy exchange between the components of strain tensor for low amplitude fast anisotropic solitary pulses. The reasons of the both types of instability are discussed in detail.The interaction between the pairs of solitary pulses of different nature is investigated both analytically as well as numerically. It is found out that solitary pulses having the different polarization, i.e. different sign of amplitudes, can form bound states, oscillating about the common center, subjected to a motion with a constant speed, approximately equal to the average of speeds of two pulses when they are far apart.  相似文献   

12.
非线性的存在会产生高次谐波,这些谐波又反作用于原来的低次谐波,使波幅发生缓慢变化,从而产生缓慢调制现象.这里从考虑均匀流作用下的毛细重力水波基本方程出发,在不可压缩、无旋、无黏条件假设下,使用多重尺度分析方法推导出了在均匀流影响下有限深水毛细重力波振幅所满足的非线性Schr?dinger方程(NLSE).分析了NLSE解的调制不稳定性.给出了毛细重力波调制不稳定的条件和钟型孤立波产生的条件.分析了无量纲最大不稳定增长率随无量纲水深和表面张力的变化趋势.同时给出了无量纲不稳定增长率随无量纲微扰动波数变化的曲线,呈现出了先增大后减小的趋势.最后指出均匀顺流减小了无量纲不稳定增长率及最大增长率,逆流增大了它们.由表面张力作用产生的毛细波及重力与表面张力共同作用产生的毛细重力波,与流的相互作用可以改变海表粗糙度和海洋上层流场结构,进而影响海气界面动量、热量及水汽的交换.了解海表这些短波动力机制,对卫星遥感的精确测量、海气相互作用的研究及海气耦合模式的改进等有重要意义.   相似文献   

13.
The laser-Doppler velocimeter was used to obtain measurements of the streamwise velocity over solid sinusoidal waves of small enough amplitude that a nonseparated flow existed. The measurements provide a critical test for Reynolds stress closure models since they are particularly sensitive to happenings in the viscous wall region (y + < 40), for which present theories are of uncertain accuracy. The results are compared with calculations that use an eddy viscosity model that successfully describes measurements of the wall shear stress along waves of small enough amplitude that a linear response is obtained. These calculations are in approximate agreement with measurements because they exactly account for inertia and viscous effects. However, there are significant differences which point to the inadequacy of turbulence models. In particular, non-linear effects and the amplitudes of the wave-induced velocity variations are underpredicted.  相似文献   

14.
The linear stability of the boundary layer developing on a flat plate in the presence of finite-amplitude, steady and spanwise periodic streamwise streaks is investigated. The streak amplitudes considered here are below the threshold for onset of the inviscid inflectional instability of sinuous perturbations. It is found that, as the amplitude of the streaks is increased, the most unstable viscous waves evolve from two-dimensional Tollmien–Schlichting waves into three-dimensional varicose fundamental modes which compare well with early experimental findings. The analysis of the growth rates of these modes confirms the stabilising effect of the streaks on the viscous instability and that this stabilising effect increases with the streak amplitude. Varicose subharmonic modes are also found to be unstable but they have growth rates which typically are an order of magnitude lower than those of fundamental modes. The perturbation kinetic energy production associated with the spanwise shear of the streaky flow is found to play an essential role in the observed stabilisation. The possible relevance of the streak stabilising role for applications in boundary layer transition delay is discussed.  相似文献   

15.
Existing ideas of instability waves as the main dynamic noise sources in supersonic jets are tested for conformity with the data of acoustic measurements of this noise. Methodologically, the problem consists in the verification of the main principles of Tam’s theory of noise radiation by supersonic jets based on the ideology of instability waves in the shear layer of the jet and their key role in noise generation. Technologically, the study is based on a new technique for measuring the noise, namely, the azimuthal decomposition method developed by the authors. It is shown that on the Strouhal number range from 0.03 to 0.35 the theory satisfactorily describes the radiation pattern of the individual harmonics, while the initial amplitudes of the instability waves are in qualitative agreement with the assumption of their uniform distribution near the nozzle edge.  相似文献   

16.
In this paper, we study the existence and the role of solitary waves in the finite amplitude instability of a layer of a second-order fluid flowing down an inclined plane. The layer becomes unstable for disturbances of large wavelength for a critical value of Reynolds number which decreases with increase in the viscoelastic parameter M. The long-term evolution of a disturbance with an initial cosinusoidal profile as a result of this instability reveals the existence of a train of solitary waves propagating on the free surface. A novel result of this study is that the number of solitary waves decreases with in crease in M. When surface tension is large, we use dynamical system theory to describe solitary waves in a moving frame by homoclinic trajectories of an associated ordinary differential equation.  相似文献   

17.
The origin of solitary waves on gas-liquid sheared layers is studied by comparing the behavior of the wave field at sufficiently low liquid Reynolds number, RL, where solitary waves are observed to form, to measurements at higher RL where solitary waves do not occur. Observations of the wave field with high-speed video imaging suggest that solitary waves, which appear as a secondary transition of the stratified gas-liquid interface, emanate from existing dominant waves, but that not all dominant waves are transformed. From measurements of interface tracings it is found that for low RL, waves which have amplitude/substrate depth (a/h) ratios of 0.5–1 occur while for higher RL, no such waves are observed. A comparison of amplitude/wavelength ratios shows no distinction for different RL. Consequently, it is conjectured that solitary waves originate from waves with sufficiently large a/h ratios; this change of form being similar to wave breaking. The dimensionless wavenumber is found to be smaller at low RL, where solitary waves are observed. This suggests that perhaps, larger precursor (to solitary wave) waves are possible because the degree of dispersion, which acts to break waves into separate modes, is lower.  相似文献   

18.
The construction of Euler fluxes is an important step in shock-capturing/upwind schemes. It is well known that unsuitable fluxes are responsible for many shock anomalies, such as the carbuncle phenomenon. Three kinds of flux vector splittings (FVSs) as well as three kinds of flux difference splittings (FDSs) are evaluated for the shock instability by a fifth-order weighted compact nonlinear scheme. The three FVSs are Steger–Warming splitting, van Leer splitting and kinetic flux vector splitting (KFVS). The three FDSs are Roe's splitting, advection upstream splitting method (AUSM) type splitting and Harten–Lax–van Leer (HLL) type splitting. Numerical results indicate that FVSs and high dissipative FDSs undergo a relative lower risk on the shock instability than that of low dissipative FDSs. However, none of the fluxes evaluated in the present study can entirely avoid the shock instability. Generally, the shock instability may be caused by any of the following factors: low dissipation, high Mach number, unsuitable grid distribution, large grid aspect ratio, and the relative shock-internal flow state (or position) between upstream and downstream shock waves. It comes out that the most important factor is the relative shock-internal state. If the shock-internal state is closer to the downstream state, the computation is at higher susceptibility to the shock instability. Wall-normal grid distribution has a greater influence on the shock instability than wall-azimuthal grid distribution because wall-normal grids directly impact on the shock-internal position. High shock intensity poses a high risk on the shock instability, but its influence is not as much as the shock-internal state. Large grid aspect ratio is also a source of the shock instability. Some results of a second-order scheme and a first-order scheme are also given. The comparison between the high-order scheme and the two low-order schemes indicates that high-order schemes are at a higher risk of the shock instability. Adding an entropy fix is very helpful in suppressing the shock instability for the two low-order schemes. When the high-order scheme is used, the entropy fix still works well for Roe's flux, but its effect on the Steger–Warming flux is trivial and not much clear.  相似文献   

19.
《Comptes Rendus Mecanique》2007,335(9-10):665-678
The Boussinesq approximation provides a convenient framework to describe the dynamics of stably-stratified fluids. A fundamental motion in these fluids consists of internal gravity waves, whatever the strength of the stratification. These waves may be unstable through parametric instability, which results in turbulence and mixing. After a brief review of the main properties of internal gravity waves, we show how the parametric instability of a monochromatic internal gravity wave organizes itself in space and time, using energetics arguments and a simple kinematic model. We provide an example, in the deep ocean, where such instability is likely to occur, as estimates of mixing from in situ measurements suggest. We eventually discuss the fundamental role of internal gravity wave mixing in the maintenance of the abyssal thermal stratification. To cite this article: C. Staquet, C. R. Mecanique 335 (2007).  相似文献   

20.
Salmi  S.  Allalou  N.  Debiane  M. 《Fluid Dynamics》2022,56(1):S53-S69

Weakly non-linear behaviour of interfacial short-crested waves with current is presented in this paper. Two approaches are used to determine analytical solutions. First, a perturbation method was applied to determine the fifth-order solutions. The advantage of this method is that it allows for the determination of the harmonic resonance condition which is one of the major short-crested waves characteristics. The second method is Whitham’s Lagrangian approach. From this method, we obtained a quadratic dispersion equation. In the linear case, we have shown that there is a critical current beyond which steady wave solutions cannot exist. This critical current is associated with the emergence of instability. For the non-linear case, the critical current increases with the wave amplitude as in the two-dimensional case.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号