首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A common method for the estimation of uncertainties introduced by surface and impurity effects into experimental measurements of virial coefficients is described. The sign and the amplitude of the second virial coefficient response to perturbation caused by adsorption of molecules on the internal surface of the vessel have been determined. It has been shown that the magnitude of the second virial coefficient distortion depends on such competing factors as adsorption-impurity perturbation parameter, mixture composition which has been corrected taking into account this perturbation, and the nature of the impurity expressed in terms of its second virial coefficient and of the solvent-impurity cross second virial coefficient. The character of the Lennard-Jones 12–6 potential parameters perturbation, caused by the adsorption-impurity effects, is determined using second virial coefficient data inversion technique. Numerical estimates are made for nitrogen, helium, argon, xenon, their binary mixtures, and also for krypton-sulphur hexafluoride gaseous mixtures.  相似文献   

2.
New measurements are reported of the density dependent depolarization ratio for argon, krypton, xenon, methane and sulphur hexafluoride, and the results are analysed to provide values for the second and third depolarization virial coefficients. The relationships between the second depolarization virial coefficient, the zeroth moment of the two-body Rayleigh spectrum and the second Kerr virial coefficient are considered, and it is shown that they now provide consistent results for the collision-induced pair polarizability anisotropy. Former inconsistencies are attributed to insufficient allowance for the effects of three-body interactions. Calculations of the second and third depolarization virial coefficients based on the DID model and using the Maitland-Smith potential are in excellent agreement with the experimental results for argon, krypton and xenon.  相似文献   

3.
The second Kerr virial coefficient of rare gases is studied in this work using the best ab initio potentials and (hyper)polarizabilities in the literature. The second Kerr virial coefficient of helium-4, helium-3, neon, argon, and krypton and its polarizability component of xenon are computed by the semi-classical method together with the Padé approximant over a wide temperature range. In addition, the uncertainty of second Kerr virial coefficient is estimated from the uncertainties of the ab initio interaction-induced properties. The experimental and theoretical data in the literature is compared with our calculated values to examine the quality of this work. It is shown that our computed values in the supplementary materials are as accurate as the literature data at medium and high temperatures and are more reliable at low temperatures.  相似文献   

4.
A semiempirical expression based on numerical values of the second virial coefficient of the two-centre Lennard-Jones molecules and on the theoretical expression for hard dumbells is given. The resulting expression possesses the form developed formerly for the second virial coefficient of the Kihara non-spherical molecules and reproduces fairly well the correct limits at high temperatures. It allows the prediction of the second virial coefficient at reduced temperatures T*≧0·5.  相似文献   

5.
The screened second virial coefficient of a plasma which was given in a previous paper is discussed. Numerical values differ at high temperatures from those of the second virial coefficient with DEBYE potential (i.e. BETH -UHLENBECK formula with DEBYE potential).  相似文献   

6.
Numerical values of reduced second and third virial coefficients and their temperature derivatives are reported for a two-dimensional gas, for use in interpreting adsorption isotherms of monolayers on isoenergetic substrates. Correct values of the third virial coefficient have not been available before. Examples of earlier treatments of adsorption data are given to demonstrate that values of the higher virial coefficients are essential for adequate discussions of adsorption isotherms. When these are used the high-temperature adsorption isotherms of argon on graphitized carbon black in the monolayer region are completely described in terms of the unperturbed bulk-gas parameters.  相似文献   

7.
Isotropic and anisotropic collision-induced light scattering spectra of helium gas at room temperature 294.5?K and at 99.6?K with the second pressure virial coefficients, second acoustic virial coefficients, viscosity and thermal conductivity have been used for deriving the empirical models of the pair-polarizability trace and anisotropy and the interaction potential. Theoretical zeroth and second moments of the binary spectra using various models for the pair-polarizabilities and interatomic potential are compared with the experimental values performed by Le Duff's group. In addition, third pressure virial coefficients, isotopic thermal factors, self diffusion coefficients, second virial dielectric constants and second Kerr coefficients calculated for these models are compared with experimental ones. The results show that these models are the most accurate models reported to date for this system.  相似文献   

8.
本文以两中心的Lennard—Jones(2CLJ)流体为研究对象,通过引入与温度相关的势能参数,提出了改进型的2CLJDQP势能函数模型。应用此模型计算了乙烷(C2H6)、六氟乙烷(C2F6)、氟甲烷(CH3F)、氯甲烷(CH3C1)、1,1,1-三氟乙烷(CH3CF3)、二氟乙烷(CH3CHF2)的第二维里系数,较...  相似文献   

9.
Critical constants of pure fluids (as important reference data in constructing vapour-liquid phase diagrams and basic input of various estimation methods) were determined for systems of non-spherical Kihara molecules; values of the critical temperature, density, compression factor and pressure of fluids composed of prolate and oblate molecules were evaluated from the fourth-order virial expansion. The second and third virial coefficients of the Kihara molecules were determined by applying the recently proposed method in which the effect of molecular core geometry and functional dependence of a pair interaction on the surface-surface distance are factorized and the former contribution determined from a formula for the corresponding hard convex body virial coefficient. The virial expansion for non-spherical Kihara molecules is applied to determine the critical constants of n-alkanes (methane to octane) and cyclic hydrocarbons (cyclopentane, cyclohexane, benzene and naphthalene); a fair agreement with experimental data was found.  相似文献   

10.
宋渤  王晓坡  吴江涛  刘志刚 《物理学报》2011,60(3):33401-033401
根据量子力学和分子运动学理论,采用稀有气体的ab initio势能,分别计算了氦-4、氖、氩、氪和氙纯质在低密度时的热物理性质,包括第二维里系数,热扩散系数和热扩散因子,计算的温度范围为50—5000 K.预测结果具有较高的精度,与采用经验势能的计算结果相比,本文结果更接近实验数据和REFPROP 8.0的标准值,为相关的科学研究和工程应用提供了所需的基础数据. 关键词: ab initio势能')" href="#">ab initio势能 稀有气体 热物理性质  相似文献   

11.
Second virial coefficients for the density dependence of a number of electric properties are calculated for neon gas. Employing an accurate CCSD(T) potential for the Ne2 van der Waals dimer and interaction-induced electric dipole polarizabilities and hyperpolarizabilities obtained from CCSD response theory, we evaluated the dielectric, refractivity, Kerr and ESHG second virial coefficients using both a semiclassical and a quantum statistical approach. The results cover a wide range of temperatures and are expected to be more reliable than the available experimental and empirical data. Quantum effects are found to be important only for temperatures below 100 K. The frequency-dependence of the refractivity virial coefficient is found to be small, but not negligible. For frequencies in the visible region it accounts for a few percent of the final results. For the ESHG virial coefficient of neon, frequency dependence is found to be very important, accounting for 20–25% of the second virial coefficient at the typical frequencies employed in experiments.  相似文献   

12.
The first experimental osmotic equation of state is reported for well-defined magnetic colloids that interact via a dipolar hard-sphere potential. The osmotic pressures are determined from the sedimentation equilibrium concentration profiles in ultrathin capillaries using a low-velocity analytical centrifuge, which is the subject of the accompanying paper I. The pressures of the magnetic colloids, measured accurately to values as low as a few pascals, obey Van 't Hoff's law at low concentrations, whereas at increasing colloid densities non-ideality appears in the form of a negative second virial coefficient. This virial coefficient corresponds to a dipolar coupling constant that agrees with the coupling constant obtained via independent magnetization measurements. The coupling constant manifests an attractive potential of mean force that is significant but yet not quite strong enough to induce dipolar chain formation. Our results disprove van der Waals-like phase behavior of dipolar particles for reasons that are explained.  相似文献   

13.
Editorial     
Using coupled cluster singles and doubles linear response theory and the d-aug-cc-pVTZ basis set extended with a 3s3p2d1f1g set of midbond functions, the interaction induced electric dipole polarisability surface of the CO–Ar van der Waals complex is computed. Combining this surface with accurate intermolecular potential energy and electric dipole surfaces, the pressure and dielectric second virial coefficients of the complex are calculated by a classical statistical approach. Excellent agreement with experimental results (to within the experimental error bars) is obtained for the pressure second virial coefficient over a range of temperatures. No previous experimental or theoretical investigations have been carried out for the dielectric second virial coefficient, B ε(T), which is estimated to be about 1.9 cm6 mol??1 at room temperature. This value results from a balance of terms due to the interaction induced electric dipole polarisability (predominant at high temperatures) and orientational electric dipole contributions.  相似文献   

14.
Within a quantum virial expansion, we investigate theoretically the violation of universal thermodynamics for a strongly interacting unitary Fermi gas trapped in a harmonic potential. The violation is caused by the existence and anisotropy of the trapping potential and a finite-range of the two-body interaction. We calculate the second virial coefficient by solving a two-fermion problem in 3D uniform harmonic traps, as well as in anisotropic traps. In the unitarity limit, the universal value of the trapped second virial coefficient is 1/4. We discuss in detail the non-universal correction to the second virial coefficient and to the equation of state.  相似文献   

15.
The relationship between the bulk, shear moduli and second virial coefficient of amorphous materials is derived according to their dependences with the radial distribution function. Lennard-Jones–Gaussian potential is used to investigate the relationship between second virial coefficient and temperature, where Lennard-Jones potential represents interactions with the nearest neighbor atoms, and Gaussian potential is responsible for the multi-atom interactions including the next nearest neighbor atoms and heterogeneous structures for a metallic glass. The results show that deep potential well formed by Gaussian potential causes a large second virial coefficient at low temperatures, which is very obvious for the larger fragility glasses. The quadratic form relationship of shear modulus and compositions is proposed, and confirmed by the experimental results of PdxNi100−x−20P20 alloy.  相似文献   

16.
卢贵武  张军 《大学物理》2000,19(1):21-22
用参数变换方法,研究了位形配分函数对体积的一次导数,得到了第二位力系数,从而证明了第二位力系数与体积无关,并对现有教材所给出的条件加以补充。  相似文献   

17.
S. Singh 《Physica A》1977,89(1):219-222
The second dielectric virial coefficient is evaluated for nonspherical polar fluids and compared with the experimental data of NH3 and CH3F.  相似文献   

18.
For a large class of intermolecular potentials, the values of the second virial coefficient at a discrete set of temperature points in an arbitrarily small neighborhood of the origin determine the potential uniquely.  相似文献   

19.
A four-dimensional potential energy hypersurface (PES) for the interaction of two rigid nitrogen molecules was determined from high-level quantum-chemical ab initio computations. A total of 408 points for 26 distinct angular configurations were calculated utilizing the counterpoise-corrected supermolecular approach at the CCSD(T) level of theory and basis sets up to aug-cc-pV5Z supplemented with bond functions. The calculated interaction energies were extrapolated to the complete basis set limit and complemented by corrections for core–core and core–valence correlations, relativistic effects and higher coupled-cluster levels up to CCSDT(Q). An analytical site–site potential function with five sites per nitrogen molecule was fitted to the interaction energies. The PES was validated by computing second and third pressure virial coefficients as well as shear viscosity and thermal conductivity in the dilute-gas limit. An improved PES was obtained by scaling the CCSDT(Q) corrections for all 408 points by a constant factor, leading to quantitative agreement with the most accurate experimental values of the second virial coefficient over a wide temperature range. The comparison with the best experimental data for shear viscosity shows that the values computed with the improved PES are too low by about 0.3% between 300 and 700?K. For thermal conductivity large systematic deviations are found above 500?K between the calculated values and most of the experimental data.  相似文献   

20.
A helium–helium interatomic potential energy curve determined from quantum-mechanical ab initio calculations and described with an analytical representation considering relativistic retardation effects (R. Hellmann, E. Bich, and E. Vogel, Molec. Phys. (in press)) was used in the framework of the quantum-statistical mechanics and of the corresponding kinetic theory to calculate the most important thermophysical properties of helium governed by two-body and three-body interactions. The second pressure virial coefficient as well as the viscosity and thermal conductivity coefficients, the last two in the so-called limit of zero density, were calculated for 3He and 4He from 1 to 10 000 K and the third pressure virial coefficient for 4He from 20 to 10 000 K. The transport property values can be applied as standard values for the complete temperature range of the calculations characterized by an uncertainty of ±0.02% for temperatures above 15 K. This uncertainty is superior to the best experimental measurements at ambient temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号