首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The complex trans,cis‐[RuCl2(PPh3)2(ampi)] (2) was prepared by reaction of RuCl2(PPh3)3 with 2‐aminomethylpiperidine(ampi) (1). [RuCl2(PPh2(CH2)nPPh2)(ampi) (n = 3, 4, 5)] (3–5) were synthesized by displacement of two PPh3 with chelating phosphine ligands. All complexes (2–5) were characterized by 1 H, 13C, 31P NMR, IR and UV‐visible spectroscopy and elemental analysis. They were found to be efficient catalysts for transfer hydrogen reactions. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

2.
Two new aminophosphines – furfuryl‐(N‐dicyclohexylphosphino)amine, [Cy2PNHCH2–C4H3O] ( 1 ) and thiophene‐(N‐dicyclohexylphosphino)amine, [Cy2PNHCH2–C4H3S] ( 2 ) – were prepared by the reaction of chlorodicyclohexylphosphine with furfurylamine and thiophene‐2‐methylamine. Reaction of the aminophosphines with [Ru(η6p‐cymene)(μ‐Cl)Cl]2 or [Ru(η6‐benzene)(μ‐Cl)Cl]2 gave corresponding complexes [Ru(Cy2PNHCH2–C4H3O)(η6p‐cymene)Cl2] ( 1a ), [Ru(Cy2PNHCH2–C4H3O)(η6‐benzene)Cl2] ( 1b ), [Ru(Cy2PNHCH2–C4H3S)(η6p‐cymene)Cl2] ( 2a ) and [Ru(Cy2PNHCH2–C4H3S)(η6‐benzene)Cl2] ( 2b ), respectively, which are suitable catalyst precursors for the transfer hydrogenation of ketones. In particular, [Ru(Cy2PNHCH2–C4H3S)(η6‐benzene)Cl2] acts as a good catalyst, giving the corresponding alcohols in 98–99% yield in 30 min at 82 °C (up to time of flight ≤ 588 h?1). Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

3.
The Friedländer condensation of 3-aminothieno[2,3-b]pyrazine-2-carboxaldehyde with either methyl ketones or carbocyclic and heterocyclic ketones leads to a family of new bidentate ligands containing a pyridothienopyrazine coordinating unit. Complexation with [Ru(bpy)2Cl2] affords the corresponding six-coordinated Ru(II) complexes. The structures were analyzed by 1H NMR spectroscopy, which shows shielding effects reflecting significant interligand π-stacking interaction in the complexes. The photophysical properties of the ligands and their metallic complexes have been also examined.  相似文献   

4.
A stereoselectivity switchable polymerization of isoprene has been developed, which is catalyzed by iminoimidazole‐Co(II) and ‐Fe(II) complexes. The influence of substituents ranging from electron donating to the electron withdrawing on the iminoimidazole‐Co(II) and ‐Fe(II) catalysts is investigated for isoprene polymerization. Two sets of iminoimidazole‐Co(II) and ‐Fe(II) complexes have been prepared and fully characterized. X‐ray crystallography analysis reveals that the complexes Co1 and Fe1 adopt distorted tetrahedral geometries. In the presence of AlEt2Cl as co‐catalyst, all the Co(II) complexes are active and the catalytic activity is highly dependent on the molar ratio of Al/Co. All the Co(II) complexes exhibit higher activities at low Al/Co ratio. Compared with the Co(II) complexes, the Fe(II) complexes are essentially inactive under the identical condition. However, on activation with combination of AlEtCl2 and [Ph3C][B(C6F5)4], both Co(II) and Fe(II) complexes display high activities with good conversions of isoprene (up to >99%). Additionally, low molecular weight and high trans‐1,4‐unit (>96%) selectivity are characteristics of the resultant polyisoprene. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 767–775  相似文献   

5.
A one pot, multi-component CuAAC reaction has been developed for the generation of alkyl, benzyl or aryl substituted bi and tridentate pyridyl-1,2,3-triazole ligands from their corresponding halides, sodium azide and alkynes in excellent yields. The ligands have been fully characterized by elemental analysis, HR-ESMS, IR, 1H and 13C NMR and in the ferrocenyl substituted cases the structures were confirmed by X-ray crystallography. Additionally, we have examined the coordination chemistry of these ligands and found that a variety of geometrically diverse Cu(II) and Ag(I) complexes, including interesting tri and tetrasilver complexes, can be formed.  相似文献   

6.
The catalytic activity in asymmetric transfer hydrogenation of ketones using octahedral and half-sandwich (η5-indenyl and η6-arene) ruthenium(II) complexes containing the chiral ligand (4S)-2-[(Sp)-2-(diphenylphosphino)ferrocenyl]-4-(isopropyl)oxazoline (FcPN) has been explored. Catalytic studies with complex fac-[RuCl22(P,N)-FcPN}(PMe3)2] (1) show excellent TOF values (9600 h−1). Experiments in the presence of free FcPN, which lead to an increase in conversion rates and ee values when the catalyst is complex [Ru(η5-C9H7){κ2(P,N)-FcPN}(PPh3)][PF6] (4) have been carried out. The characterization of the new complexes mer-trans-[RuCl2{P(OMe)3}22(P,N)-FcPN}] and of the water-soluble complexes fac- and mer-trans-[RuCl2(PTA)22(P,N)-FcPN}] is also reported.  相似文献   

7.
杜旺明  王清福  余正坤 《催化学报》2013,34(7):1373-1377
合成了一种基于吡啶骨架含有苯并咪唑和手性咪唑啉基团的三齿NNN配体及其二价钌(II)配合物,通过核磁共振波谱学和X射线单晶晶体结构测定确认了钌(II)配合物的分子结构.这些配合物在室温下催化酮的氢转移反应,表现出了优异的催化活性,收率和ee值最高分别可达99%和97%.  相似文献   

8.
Two novel cyclotriphosphazene ligands ( 2 and 3 ) bearing 3‐oxypyridine groups and their corresponding Ru(II) complexes ( 4 and 5 ) were synthesized and their structures were characterized using Fourier transform infrared, 1H NMR and 31P NMR spectroscopic data and elemental analysis. The Ru(II) complexes were used as catalysts for catalytic transfer hydrogenation of p‐substituted acetophenone derivatives in the presence of KOH. Additionally, the cytotoxic activities of compounds 2 , 3 , 4 , 5 were evaluated against PC3 (human prostate cancer), DLD‐1 (human colorectal cancer), HeLa (human cervical cancer) and PNT1A (normal human prostate) cell lines. Finally the antimicrobial activities of compounds 2 , 3 , 4 , 5 were evaluated against a panel of Gram‐positive and Gram‐negative bacteria and yeast cultures. The complexes showed efficient catalytic activity towards transfer hydrogenation of acetophenone derivatives, especially those bearing electron‐withdrawing substituents on the para‐position of the aryl ring. The compounds were found to have moderate to high cytotoxic and antimicrobial activities, and Ru(II) complexation enhanced both cytotoxic and antimicrobial activities in comparison with the parent compounds. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
Two new half‐sandwich Ru (II)(p‐cymene) complexes ( 1 and 2 ) containing dopamine‐based (N, O) Schiff base ligands ( L 1 H and L 2 H ) were synthesized and characterized by FT‐IR, UV–Visible and 1H & 13C NMR spectral techniques, and elemental analyses. The spectroscopic and analytical data revealed monobasic bidentate coordination of the ligands with Ru ion. The molecular structures of L 1 H , L 2 H and 2 were further confirmed by single crystal X‐ray diffraction study. Complexes 1 and 2  have been employed as catalysts in the transfer hydrogenation of ketones using 2‐propanol as a hydrogen source at 85 °C under base‐free condition. Good to the excellent yield of secondary alcohols, gram scale synthesis, and high TON and TOF made this catalytic system interesting.  相似文献   

10.
Twelve ruthenium(III) complexes bearing amine-bis(phenolate) tripodal ligands of general formula [Ru(L1–L3)(X)(EPh3)2] (where L1–L3 are dianionic tridentate chelator) have been synthesized by the reaction of ruthenium(III) precursors [RuX3(EPh3)3] (where E = P, X = Cl; E = As, X = Cl or Br) and [RuBr3(PPh3)2(CH3OH)] with the tripodal tridentate ligands H2L1, H2L2 and H2L3 in benzene in 1:1 molar ratio. The newly synthesized complexes have been characterized by analytical (elemental and magnetic susceptibility) and spectral methods. The complexes are one electron paramagnetic (low-spin, d5) in nature. The EPR spectra of the powdered samples at RT and the liquid samples at LNT shows the presence of three different ‘g’ values (gx ≠ gy ≠ gz) indicate a rhombic distortion around the ruthenium ion. The redox potentials indicate that all the complexes undergo one electron transfer process. The catalytic activity of one of the complexes [Ru(pcr-chx)Br(AsPh3)2] was examined in the transfer hydrogenation of ketones and was found to be efficient with conversion up to 99% in the presence of isopropanol/KOH.  相似文献   

11.
Piano‐stool ([(p‐cymene)Ru(thz)Cl], 2 ) and six‐coordinated ([Ru(thz)2(PPh3)2], 3 ) ruthenium complexes derived from 2‐phenylthiazoline‐4‐carboxylic acid (Hthz, 1 ) were synthesized for the first time, and fully characterized using conventional methods. Also, the molecular structure of complex 3 was determined using X‐ray analysis. These complexes were evaluated as catalysts for transfer hydrogenation of carbonyl compounds in the presence of isopropyl alcohol and KOtBu. Complex 2 was found to be more active than 3 in transfer hydrogenation. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

12.
A series of new hexa‐coordinated ruthenium(II) hydroxyquinoline–thiosemicarbazone complexes of the type [Ru(CO)(EPh3)(B)(L)] (E = P or As; B = PPh3, AsPh3 or Py; L = hydroxyquinoline–thiosemicarbazone) were synthesized by reacting ruthenium precursor complexes [RuHCl(CO)(EPh3)2(B)] (E = P or As; B = PPh3, AsPh3 or Py) with hydroxyquinoline–thiosemicarbazone ligands in ethanol. The new complexes were characterized by analytical and spectroscopic (FT‐IR, UV–visible, NMR (1H, 13C and 31P) and fast atom bombardment (FAB)–mass spectrometric methods. Based on the spectral results, an octahedral geometry was assigned for all the complexes. The new complexes showed good catalytic activity for the conversion of aldehydes to amides in the presence of hydroxylamine hydrochloride–sodium bicarbonate and for the oxidation of alkanes into their corresponding alcohols and ketones in the presence of m‐chloroperbenzoic acid. The complexes also catalyzed the N‐alkylation of benzylamine in the presence of KOtBu in alcohol medium. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

13.
A series of iron(II) complexes (4a-d, 10, and 11) bearing 2,6-bis[(imino)ethyl]pyridine-(3a-d), quinolinaldimine-(8) and thiophenaldimine-(9) based ligands were disclosed as active complexes for the polymerization of tert-butylacrylate (t-BA). After activation with methyl aluminoxane (MAO), the complexes showed moderate to high polymerization activities and produced high molar mass polymers. In addition, the catalyst system 4d/MAO was examined for the polymerization of methyl methacrylate (MMA) and n-vinylcarbazole (NVC). The influence of MAO/Cat. molar ratio, polymerization time, and monomer concentration on the polymerization reaction of methyl methacrylate was explored.In the polymerization of tert-butylacrylate with 2,6-bis[(imino)ethyl]pyridine iron(II)-based catalysts, bulky terminal aliphatic substituents have a favorable influence on the polymerization activity compared to the aromatic ones. This catalyst system was also more active than the quinolinaldimine-, (10) and thiophenaldimine-, (11) based catalysts.  相似文献   

14.
A series of new hexa-coordinated ruthenium(II) carbonyl complexes of the type [RuCl(CO)(EPh3)(B)(L)] (E = P or As; B = PPh3, AsPh3 or Py; L = 2′-hydroxychalcones) have been prepared by reacting [RuHCl(CO)(EPh3)2(B)] (E = P or As; B = PPh3, AsPh3 or Py) with 2′-hydroxychalcones in benzene under reflux. The new complexes have been characterized by analytical and spectral (IR, electronic, 1H, 31P and 13C NMR) data. Based on the above data, an octahedral structure has been assigned for all the complexes. The new complexes exhibit catalytic activity for the oxidation of primary and secondary alcohols into their corresponding aldehydes and ketones in the presence of N-methylmorpholine-N-oxide (NMO) as co-oxidant and also found efficient catalyst in the transfer hydrogenation of ketones. The antifungal properties of the complexes have also been examined and compared with standard Bavistin.  相似文献   

15.
A group of a diverse family of dinuclear copper(II) complexes derived from pyrazole‐containing tridentate N2O ligands, 1,3‐bis(3,5‐dimethylpyrazol‐1‐yl)propan‐2‐ol (Hdmpzpo), 1,3‐bis(3‐phenyl‐5‐methyl pyrazol‐1‐yl)propan‐2‐ol (Hpmpzpo) and 1,3‐bis(3‐cumyl‐5‐methylpyrazol‐1‐yl)propan‐2‐ol (Hcmpzpo), were synthesized and characterized by elemental analysis, IR spectroscopy and three of them also by single‐crystal X‐ray diffraction. Three complexes, [Cu2(pmpzpo)2](NO3)2·2CH3OH ( 3 ·2CH3OH), [Cu2(pmpzpo)2](ClO4)2 ( 4 ) and [Cu2(cmpzpo)2](ClO4)2·2DMF ( 7 ·2DMF), each exhibits a dimeric structure with a inversion center being located between the two copper atoms. The metal ion is coordinated in a distorted square planar environment by two pyrazole nitrogen atoms and two bridging alkoxo oxygen atoms. Both complexes 1 ·CH3OH·H2O and 3 ·2CH3OH were investigated in anaerobic conditions for the catalytic oxidation of 3,5‐di‐tert‐butylcatechol (3,5‐DTBC) to the corresponding quinone (3,5‐DTBQ), for modeling the functional properties of catechol oxidase. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

16.
A variety of chiral N,N‐bidentate and N,N,N‐tridentate ligands based on the pyridine framework, namely C2‐symmetric dipyridylmethane and terpyridine, N‐(p‐toluensulfinyl)iminopyridines and two kinds of iminopyridines, has been assessed in the asymmetric copper(I)‐catalysed allylic oxidation of cyclic olefins. Catalytic activity and enantioselectivity were found to be highly dependent upon the framework of the ligands, which afforded cycloalkenyl benzoates in low to moderate yields and enantioselectivities. The best yields (up to 70%) and enantioselectivities (up to 53% enantiomeric excess) were obtained with an iminopyridine based on camphane and quinoline skeletons. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

17.
Air-stable monomeric rhodium(III) NCN pincer complexes were synthesized via direct C-H bond activation of 1,3-bis(2-pyridyloxy)benzene, 3,5-bis(2-pyridyloxy)toluene and 3,5-bis(2-pyridyloxy)anisole with RhCl3·3H2O in ethanol under reflux. The synthesized complexes were characterized by elemental analysis and 1H NMR. One of the complexes was structurally characterized by X-ray analysis. An investigation into the catalytic activity of the complex 1a as catalyst for transfer hydrogenation of ketones to alcohols at 82 °C in the presence of iPrOH/KOH was undertaken with the conversions up to 99%.  相似文献   

18.
Ruthenium complexes [RuCl2L2] were prepared by treating [RuCl2(p‐cymene)]2 with structurally similar N‐(2‐(diphenylphosphino)benzylidene)‐3‐methylpyridin‐2‐amine, 4‐(2‐(diphenylphosphino)benzylideneamino)‐3‐methylphenol and 4‐(2‐(2‐(diphenylphosphino)benzylideneamino)ethyl)phenol refluxed in toluene. These complexes were used as catalysts for the transfer hydrogenation of acetophenones in 2‐propanol and for the direct hydrogenation of styrenes under hydrogen pressure. The results of the catalytic studies provide evidence that these complexes function as excellent catalysts for hydrogenation and transfer hydrogenation. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.
The phosphite complexes cis-[PtMe2L(SMe2)] in which L = P(OiPr)3, 1a, or L = P(OPh)3, 1b, were synthesized by the reaction of cis,cis-[Me2Pt(μ-SMe2)2PtMe2] with 2 equiv. of L. If 4 equiv. of L was used the bis-phosphite complexes cis-[PtMe2L2] in which L = P(OiPr)3, 2a, or L = P(OPh)3, 2b, were obtained. The reaction of cis-[Pt(p-MeC6H4)2(SMe2)2] with 2 equiv. of L gave the aryl bis-phosphite complexes cis-[Pt(p-MeC6H4)2L2] in which L = P(OiPr)3, 2a′, or L = P(OPh)3, 2b′. Use of 1 equiv. of L in the latter reaction gave the bis-phosphite complex along with the starting complex in a 1:1 ratio.The complexes failed to react with MeI. The reaction of cis,cis-[Me2Pt(μ-SMe2)2PtMe2] with 2 equiv. of the phosphine PPh3 gave cis-[PtMe2(PPh3)2] and cis-[PtMe2(PPh3)(SMe2)] along with unreacted starting material. Reaction of cis-[PtMe2L(SMe2)], 1a and 1b with the bidentate phosphine ligand bis(diphenylphosphino)methane, dppm = Ph2PCH2PPh2, gave [PtMe2(dppm)], 8, along with cis-[PtMe2L2], 2. The reaction of cis-[PtMe2L(SMe2)] with 1/2 equiv. of the bidentate N-donor ligand NN = 4,4′-bipyridine yielded the binuclear complexes [PtMe2L(μ-NN)PtMe2L] in which L = P(OiPr)3, 3a, or L = P(OPh)3, 3b.The complexes were fully characterized using multinuclear NMR (1H, 13C, 31P, and 195Pt) spectroscopy.  相似文献   

20.
Neutral and Cationic Ruthenium(II) Complexes with Trifunctional Phosphane Ligands Compounds of the type [RuCl2(RPX2)2] 4 – 7 (R = iPr, tBu; X = CH2CH2OMe, CH2CO2Me) were prepared by reacting RPX2 with either RuCl3 · 3H2O or [RuCl2(PPh3)3], respectively. In 4 – 7 the trifunctional phosphanes coordinate as bidentate ligands to the metal center through the phosphorus atom and the oxygen atom of a methoxy or carbonyl group. The lability of the Ru–O bond allows substitution reactions with CO, tert-butylisonitrile and phenylacetylene. The Ru–Cl bonds in 5 (R = tBu; X = CH2CH2OMe) can be cleaved upon treatment with one or two equiv of AgPF6 yielding mono- or dicationic derivatives. In these complexes the ligands are coordinated to the metal center through the phosphorus and both of the oxygen donor atoms. The reaction of the phosphinoesterenolate compound 17 with Ph2C=C=O leads to the insertion of two molecules of the ketene into the C–H bond of one of the five-membered metal-enolate rings to yield the “expanded” chelate complex 18 , the structure of which was determined by X-ray crystallography.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号