首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this work we evaluate the interaction of high intense laser beam with a steepened density profile. During laser interaction with underdense plasma by freely expanding plasma regime, modification of density profile is possible. In this paper we have investigated the ultra short laser pulse interaction with nonisothermal and collisionless plasma. We consider self–focusing as an effective nonlinear phenomenon that tends to increase when the laser power is more than critical rate. By leading the expanded plasma to a preferred location near to critical density, laser reflection is obtained, so the density profile will be locally steepened. The electromagnetic fields are evaluated in this new profile. We show the amplitude and period of electrical field oscillation are increased by reducing the steepened scale length. Also our numerical results identify that by reducing the steepened scale length, the electrical field is increased to wave breaking threshold limit. This high gradient electrical field causes the effective beam loading during the wave breaking phenomenon. The wave breaking can be the initial point for other acceleration regime as cavity or channel guiding regime. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
Laser wake field acceleration: the highly non-linear broken-wave regime   总被引:2,自引:0,他引:2  
We use three-dimensional particle-in-cell simulations to study laser wake field acceleration (LWFA) at highly relativistic laser intensities. We observe ultra-short electron bunches emerging from laser wake fields driven above the wave-breaking threshold by few-cycle laser pulses shorter than the plasma wavelength. We find a new regime in which the laser wake takes the shape of a solitary plasma cavity. It traps background electrons continuously and accelerates them. We show that 12-J, 33-fs laser pulses may produce bunches of 3×1010 electrons with energy sharply peaked around 300 MeV. These electrons emerge as low-emittance beams from plasma layers just 700-μm thick. We also address a regime intermediate between direct laser acceleration and LWFA, when the laser-pulse duration is comparable with the plasma period. Received: 12 December 2001 / Published online: 14 March 2002  相似文献   

3.
We study pump requirements to produce femtosecond X-ray laser pulses at saturation from inner-shell transitions in the amplified spontaneous emission regime. Since laser-based betatron radiation is considered as the pumping source, we first study the impact of the driving laser power on its intensity. Then we investigate the amplification behavior of the K-α transition of nitrogen at 3.2?nm (395?eV) from radiative transfer calculations coupled with kinetics modeling of the ion population densities. We show that the saturation regime may be experimentally achieved by using PW-class laser-accelerated electron bunches. Finally, we show that this X-ray laser scheme can be extended to heavier atoms and we calculate pump requirements to reach saturation at 1.5?nm (849?eV) from the K-α transition of neon.  相似文献   

4.
Using numerical solutions of the time-dependent Schr?dinger equation for a hydrogen and a helium atom in a linearly polarized, few-cycle laser field, we calculate the photoelectron left-right asymmetry measured by two opposing detectors placed along the laser polarization vector, with the laser focus in the center. We find a simple dependence of this asymmetry on carrier-envelope (CE) phase phi for laser intensities slightly below the tunneling regime, which may allow us to measure (or to calibrate) and to stabilize the CE phase. In particular, we suggest that the condition of zero asymmetry for few-cycle pulses may be useful for both these goals.  相似文献   

5.
It is shown that lasing action at subwavelength scales can be achieved in realistic plasmonic systems supporting long‐range surface plasmons (LRSPPs). To this end, a general numerical framework has been developed that is able to accurately account for the full spatio‐temporal lasing dynamics and the vastly different length‐ and time‐scales featured by this class of systems. Starting from a loss compensation regime for propagating LRSPPs, it is shown how the introduction of an optical feedback mechanism induces the formation of a self‐sustained laser oscillation at moderate pump intensities. The simplicity of the proposed subwavelength scale laser offers significant potential as a novel class of planar light sources in complex plasmonic circuits.  相似文献   

6.
A hybrid optomechanical system which is composed of an atomic ensemble and a standard optomechanical cavity driven by a periodically modulated external laser field is investigated. Based on the simple periodic modulation forms of the driving amplitude and effective optomechanical coupling, respectively, the atom‐mirror entanglement is discussed in detail. It is found that the maximum of the entanglement in the unresolved‐sideband regime can be further enhanced compared with the non‐modulation regime. On the other hand, we find that the introduction of the atomic ensemble permits the mechanical squeezing induced by the periodic amplitude modulation can be successfully generated even in the unresolved‐sideband regime. Due to the self‐cooling mechanism constructed by the atomic ensemble, the mechanical squeezing scheme no longer requires the extra precooling technologies.  相似文献   

7.
The temporal evolution of atomic wave packets interacting with object and reference electromagnetic waves is investigated, and an analytical solution for the off-resonant density matrix is presented. It is shown that, under certain physical conditions, the diffraction of an ultracold atomic beam by an inhomogeneous laser field can be interpreted as if the beam passes through a three-dimensional hologram. We show that high diffraction efficiencies can be realized if one restricts the extent of the atomic hologram in the time domain rather than in space. The hologram, thus, can work in a pulsed regime pumping atoms from the beam or from the initial wave packet into the reconstructed matter wave. The suggested regime is well compatible with the Raman cooling methods and the recent realization of an atom laser, which are capable of repeatedly reproducing coherent, or almost coherent, atomic wave packets necessary for the actual implementation of the reading beam. It is found that the diffraction efficiency of such a hologram may reach 100% and is determined by the duration of laser pulses. On this basis, a new method for the reconstruction of the object image with matter waves is offered. The latter may have useful practical applications, ranging from atom lithography, to the manufacturing of microstructures, and quantum microfabrication.  相似文献   

8.
We demonstrate that in ultraintense ultrafast laser-matter interaction, the interplay of laser-induced oscillating space-charge fields with laser E and B fields can strongly affect whether the interaction is relativistic or not: stronger laser fields may not in fact produce more relativistic plasma interactions. We show that there exists a regime of interaction, in the relation of laser intensity and incident angle, for which the Brunel effect of electron acceleration is strongly suppressed by AC gyromagnetic fields, at a frequency different from the laser field. Analytically and with 1.5D particle-in-cell modeling, we show that from gyromagnetic effects, even in the absence of usual J x B second-harmonic contributions, there are strong effects on the harmonic emission and on the generation of attosecond pulses.  相似文献   

9.
State-of-the-art petawatt laser beams may be focused down to few-micron spot sizes and can produce violent electron acceleration as a result of the extremely intense and asymmetric fields. Classical fifth-order calculations in the diffraction angle show that electrons, injected sideways into the tightly focused laser beam, get captured and gain energy in the GeV regime. We point out the most favorable points of injection away from the focus, along with an efficient means of extracting the energetic electron with a static magnetic field.  相似文献   

10.
Many trace chemical analyses are being transitioned from the lab to the field, among which is surface‐enhanced Raman spectroscopy. Although initial portable Raman analyzers primarily employ 785 nm laser excitation, recent studies suggest longer wavelengths, with an appropriate surface‐enhanced Raman‐active substrate, may provide equal sensitivity. Furthermore, 1550 nm excitation may provide added safety for the user, in that permanent retina damage does not occur. Here, we show that a reasonable enhancement factor can be obtained for melamine using 1550 nm laser excitation that is nearly equivalent to those obtained using 785 and 1064 nm laser excitation. We also demonstrate that a number of other chemicals of interest can be measured by 1550 nm surface‐enhanced Raman scattering, albeit only modest sensitivity is achieved because of instrument limitations, not enhancement factors. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

11.
Electron acceleration in the laser-plasma bubble appeared to be the most successful regime of laser wake field acceleration in the last decade. The laser technology became mature enough to generate short and relativistically intense pulses required to reach the bubble regime naturally delivering quasi-monoenergetic bunches of relativistic electrons. The upcoming laser technology projects are promising short pulses with many times more energy than the existing ones. The natural question is how will the bubble regime scale with the available laser energy. We present here a parametric study of laser-plasma acceleration in the bubble regime using full three dimensional particle-in-cell simulations and compare numerical results with the analytical scalings from the relativistic laser-plasma similarity theory.  相似文献   

12.
We experimentally investigate the temporal evolution of the power of an external cavity semiconductor laser in the low-frequency fluctuation regime with subnanosecond resolution. We show, for the first time to our knowledge, that generally the laser power drops to a value significantly different from the solitary laser power. We demonstrate the analogy between the recovery of the laser intensity and the turn-on transient of a semiconductor laser.  相似文献   

13.
Spectral line‐by‐line shaping is a key enabler towards optical arbitrary waveform generation, which promises broad impact both in optical science and technology. In this paper, generation of optical and microwave arbitrary waveforms using the spectral line‐by‐line shaping technique is reviewed. Compared to conventional pulse shaping, significant new physics arises in the line‐by‐line regime, where the shaped pulse fields generated from one laser pulse now overlap with those generated from adjacent pulses. This leads to coherent interference effects related to the properties of optical frequency combs which serve as the source in these experiments. We explore such effects in a series of experiments using several different high‐repetition‐rate optical combs, including harmonically mode‐locked lasers and continuous‐wave lasers that are externally phase modulated either with or without the help of an optical cavity. As an application of line‐by‐line pulse shaping, we describe generation of microwave electrical arbitrary waveforms that can be reprogrammed at rates approaching 10 GHz.  相似文献   

14.
Nakajima T  Watanabe S 《Optics letters》2006,31(12):1920-1922
We theoretically study the dependence of atomic excitation and ionization on the carrier envelope phase of few-cycle laser pulses in the multiphoton ionization regime. Our theoretical results for the hydrogen atom based on the solution of the 3D time-dependent Schr?dinger equation show that the strong phase dependence can be seen in not only total ionization, but also bound-state population under the weak laser intensity regime.  相似文献   

15.
此文在理论上研究了非相干泵浦的常规三能级激光器输出光场和原子系统的稳态和噪声涨落行为,指出:在泵浦率与激光下能级自发辐射率可以比拟时,输出光场呈亚泊松统计,这源于原子系统参量涨落的非经典特性。  相似文献   

16.
A theoretical study for femtosecond laser-induced ultrafast electro-absorption of bulk solids is presented. Our numerical results show that, in the case of low intensity of the pump laser where the interaction between the pump laser and solids is in the multi-photon regime, the energy band of solids can be approximately taken as a parabolic band and electro-absorption spectrums from the parabolic band and real band are nearly the same. While, in the case of high intensity where the interaction is in the tunneling regime, spectrums from the parabolic band and real band are quite different.The physical mechanism for the difference in the tunneling regime is found. We find that the non-parabolic parts of the real energy band and Bragger scattering of electrons near the first Brillouin zone boundaries, which are neglected in previous studies, strongly influence the electro-absorption spectrum in the tunneling regime. These two physical processes cause the difference of spectrums. Our theoretical results are in accordance with the experiment result.  相似文献   

17.
A dressed-state study of lasing without population inversion from a three level atom interacting with a bi-chromatic laser field, in the ladder configuration, is formulated. We allow the atomic system to be dressed by both laser filed photons (double dressing). The evolution of the system under consideration is being explored both analytically and numerically, within the transient regime. Time dependent approximate analytic solutions for dressed-state populations and coherences are derived, within the so called “secular approximation,” under resonant conditions. We also present time dependent numerical solutions for population and coherences in the off-resonance regime. A spectral analysis is also performed revealing the structure of various dressed states transitions. These are shown to be composed of quintets centered about the frequencies of the coupling and probe laser fields and having sidebands located symmetrically at positions shifted from line center at the Rabi and double Rabi frequencies.  相似文献   

18.
We show that it is possible to organize regular filamentation patterns in air by imposing either strong field gradients or phase distortions in the input-beam profile of an intense femtosecond laser pulse. A comparison between experiments and 3+1 dimensional numerical simulations confirms this concept and shows for the first time that a control of the transport of high intensities over long distances may be achieved by forcing this well ordered propagation regime. In this case, deterministic effects prevail in multiple femtosecond filamentation, and no transition to the optical turbulence regime is obtained [Phys. Rev. Lett. 83, 2938 (1999)]].  相似文献   

19.
We investigate the dynamics of the Λ system driven by two resonant laser fields in presence of dissipation for coupling strengths where the rotating‐wave approximation starts to break down. This regime is characterised by Rabi frequencies being approximately equal or smaller than the field frequencies. A systematic procedure to obtain an expansion for the solution of the Bloch evolution equations of the system is presented. The lowest contribution results to be the well‐known rotating‐wave approximation. The method is based on a semi‐classical treatment of the problem, and its predictions are interpreted fully quantum mechanically. The theory is illustrated by a detailed study of the disappearance of coherent population trapping as the intensities of the fields increase.  相似文献   

20.
Trapped ions are considered one of the best candidates to perform quantum information processing. By interacting them with laser beams they are, somehow, easy to manipulate, which makes them an excellent choice for the production of nonclassical states of their vibrational motion, the reconstruction of quasiprobability distribution functions, the production of quantum gates, etc. However, most of these effects have been produced in the so-called low intensity regime, this is, when the Rabi frequency (laser intensity) is much smaller than the trap frequency. Because of the possibility to produce faster quantum gates in other regimes it is of importance to study this system in a more complete manner, which is the motivation for this contribution. We start by studying the way ions are trapped in Paul traps and review the basic mechanisms of trapping. Then we show how the problem may be completely solved for trapping states; i.e., we find (exact) eigenstates of the full Hamiltonian. We show how, in the low intensity regime, Jaynes–Cummings and anti-Jaynes–Cummings interactions may be obtained, without using the rotating wave approximation and analyze the medium and high intensity regimes where dispersive Hamiltonians are produced. The traditional approach (low intensity regime) is also studied and used for the generation of non-classical states of the vibrational wavefunction. In particular, we show how to add and subtract vibrational quanta to an initial state, how to produce specific superpositions of number states and how to generate NOON states for the two-dimensional vibration of the ion. It is also shown how squeezing may be measured. The time dependent problem is studied by using Lewis–Ermakov methods. We give a solution to the problem when the time dependence of the trap is considered and also analyze a specific (artificial) time dependence that produces squeezing of the initial vibrational wave function. A way to mimic the ion–laser interaction via classical optics is also introduced.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号