首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Treatment of [Ir(bpa)(cod)]+ complex [ 1 ]+ with a strong base (e.g., tBuO?) led to unexpected double deprotonation to form the anionic [Ir(bpa?2H)(cod)]? species [ 3 ]?, via the mono‐deprotonated neutral amido complex [Ir(bpa?H)(cod)] as an isolable intermediate. A certain degree of aromaticity of the obtained metal–chelate ring may explain the favourable double deprotonation. The rhodium analogue [ 4 ]? was prepared in situ. The new species [M(bpa?2H)(cod)]? (M=Rh, Ir) are best described as two‐electron reduced analogues of the cationic imine complexes [MI(cod)(Py‐CH2‐N?CH‐Py)]+. One‐electron oxidation of [ 3 ]? and [ 4 ]? produced the ligand radical complexes [ 3 ]. and [ 4 ].. Oxygenation of [ 3 ]? with O2 gave the neutral carboxamido complex [Ir(cod)(py‐CH2N‐CO‐py)] via the ligand radical complex [ 3 ]. as a detectable intermediate.  相似文献   

2.
A metal‐containing N‐heterocyclic germylene based on a N‐mesityl (Mes)‐substituted oxalamidine framework is reported. The precursor (MesN=)2C–C(–N(H)Mes)2 ( 1 H2) was converted into its rhodium complex [Rh(κ2N‐ 1 H2)(cod)][OTf] ( 2 ) (cod = 1,5‐cyclooctadiene; OTf = triflate) in 62 % isolated yield. Subsequent reaction of 2 with Ge{N(SiMe3)2}2 gave the crystalline N‐heterocyclic germylene [Rh(cod)(μ‐ 1 )Ge][OTf] ( 3 ) in 50 % yield. The compounds under study were fully characterized by various methods, also including X‐ray crystallographic studies on single crystals of 2 and 3 . Density functional theory (DFT) calculations revealed that π conjugation in the bridging oxalamidine framework is increased and n(N)–p(Ge) π bonding is decreased upon κ2N metal coordination; a further weakening of the Ge–N bond occurs through triflate coordination to the GeII atom. Nevertheless, preliminary coordination studies revealed that 3 behaves as 2‐electron (L ‐type) germylene donor ligand. Treatment of 3 with [Ir(cod)Cl]2 furnished the heterobimetallic complex [Rh(cod)(μ‐ 1 )Ge‐Ir(cod)Cl][OTf] ( 4 ), as evidenced by NMR spectroscopic investigations and DFT calculations.  相似文献   

3.
The mononuclear N‐heterocyclic carbene (NHC) copper alkoxide complexes [(6‐NHC)CuOtBu] (6‐NHC=6‐MesDAC ( 1 ), 6‐Mes ( 2 )) have been prepared by addition of the free carbenes to the tetrameric tert‐butoxide precursor [Cu(OtBu)]4, or by protonolysis of [(6‐NHC)CuMes] (6‐NHC=6‐MesDAC ( 3 ), 6‐Mes ( 4 )) with tBuOH. In contrast to the relatively stable diaminocarbene complex 2 , the diamidocarbene derivative 1 proved susceptible to both thermal and hydrolytic ring‐opening reactions, the latter affording [(6‐MesDAC)Cu(OC(O)CMe2C(O)N(H)Mes)(CNMes)] ( 6 ). The intermediacy of [(6‐MesDAC)Cu(OH)] in this reaction was supported by the generation of Cu2O as an additional product. Attempts to generate an isolable copper hydride complex of the type [(6‐MesDAC)CuH] by reaction of 1 with Et3SiH resulted instead in migratory insertion to generate [(6‐MesDAC‐H)Cu(P(p‐tolyl)3)] ( 9 ) upon trapping by P(p‐tolyl)3. Migratory insertion was also observed during attempts to prepare [(6‐Mes)CuH], with [(6‐Mes‐H)Cu(6‐Mes)] ( 10 ) isolated, following a reaction that was significantly slower than in the 6‐MesDAC case. The longer lifetime of [(6‐Mes)CuH] allowed it to be trapped stoichiometrically by alkyne, and also employed in the catalytic semi‐reduction of alkynes and hydrosilylation of ketones.  相似文献   

4.
The synthesis and characterisation of a series of new Rh and Au complexes bearing 1,2,4‐triazol‐3‐ylidenes with a N‐2,4‐dinitrophenyl (N‐DNP) substituent are described. IR, NMR, single‐crystal X‐ray diffraction and computational analyses of the Rh complexes revealed that the N‐heterocyclic carbenes (NHCs) behaved as strong π acceptors and weak σ donors. In particular, a natural bond orbital (NBO) analysis revealed that the contributions of the Rh→Ccarbene π backbonding interaction energies (ΔEbb) to the bond dissociation energies (BDE) of the Rh? Ccarbene bond for [RhCl(NHC)(cod)] (cod=1,5‐cyclooctadiene) reached up to 63 %. The Au complex exhibited superior catalytic activity in the intermolecular hydroalkoxylation of cyclohexene with 2‐methoxyethanol. The NBO analysis suggested that the high catalytic activity of the AuI complex resulted from the enhanced π acidity of the Au atom.  相似文献   

5.
The ready availability of rare parent amido d8 complexes of the type [{M(μ‐NH2)(cod)}2] (M=Rh ( 1 ), Ir ( 2 ); cod=1,5‐cyclooctadiene) through the direct use of gaseous ammonia has allowed the study of their reactivity. Both complexes 1 and 2 exchanged the di‐olefines by carbon monoxide to give the dinuclear tetracarbonyl derivatives [{M(μ‐NH2)(CO)2}2] (M=Rh or Ir). The diiridium(I) complex 2 reacted with chloroalkanes such as CH2Cl2 or CHCl3, giving the diiridium(II) products [(Cl)(cod)Ir(μ‐NH2)2Ir(cod)(R)] (R=CH2Cl or CHCl2) as a result of a two‐center oxidative addition and concomitant metal–metal bond formation. However, reaction with ClCH2CH2Cl afforded the symmetrical adduct [{Ir(μ‐NH2)(Cl)(cod)}2] upon release of ethylene. We found that the rhodium complex 1 exchanged the di‐olefines stepwise upon addition of selected phosphanes (PPh3, PMePh2, PMe2Ph) without splitting of the amido bridges, allowing the detection of mixed COD/phosphane dinuclear complexes [(cod)Rh(μ‐NH2)2Rh(PR3)2], and finally the isolation of the respective tetraphosphanes [{Rh(μ‐NH2)(PR3)2}2]. On the other hand, the iridium complex 2 reacted with PMe2Ph by splitting the amido bridges and leading to the very rare terminal amido complex [Ir(cod)(NH2)(PMePh2)2]. This compound was found to be very reactive towards traces of water, giving the more stable terminal hydroxo complex [Ir(cod)(OH)(PMePh2)2]. The heterocyclic carbene IPr (IPr=1,3‐bis(2,6‐diisopropylphenyl)imidazol‐2‐ylidene) also split the amido bridges in complexes 1 and 2 , allowing in the case of iridium to characterize in situ the terminal amido complex [Ir(cod)(IPr)(NH2)]. However, when rhodium was involved, the known hydroxo complex [Rh(cod)(IPr)(OH)] was isolated as final product. On the other hand, we tested complexes 1 and 2 as catalysts in the transfer hydrogenation of acetophenone with iPrOH without the use of any base or in the presence of Cs2CO3, finding that the iridium complex 2 is more active than the rhodium analogue 1 .  相似文献   

6.
A family of iridium(I) hydroxides of the form [Ir(cod)(NHC)(OH)] (cod=1,5‐cyclooctadiene, NHC=N‐heterocyclic carbene) is reported. Single‐crystal X‐ray analyses and computational methods were used to explore the structural characteristics and steric properties of these new complexes. The model complex [Ir(cod)(IiPr)(OH)] (IiPr=1,3‐(diisopropyl)imidazol‐2‐ylidene) undergoes reaction with a wide variety of substrates including boronic acids and silicon compounds. In addition, O? H, N? H and C? H bond activation was achieved with alcohols, carboxylic acids, amines and various sp‐, sp2‐ and sp3‐hybridised carbon centres, giving access to a wide range of new IrI complexes. These studies have allowed us to explore the exciting reactivity of this motif, revealing a versatile and useful synthon capable of activating important chemical bonds under mild (typically room temperature) conditions. No additives were required and, in the case of X? H bond activation, water was the only waste product, rendering this an atom efficient procedure for bond activation. This system has great potential for the construction of new catalytic cycles for organic synthesis and small‐molecule activation.  相似文献   

7.
Neutral and cationic cyclopentadienone (CpO) N‐heterocyclic carbene (NHC) bis‐carbonyl iron(0) complexes bearing, appended to the NHC ligand, either a terminal amino group on the lateral chain, [Fe(η4‐CpO)(CO)2C‐NHC(CH2)nNH2)] with n = 2 ( 2a ) and 3 ( 2b ), or a cationic NMe3+ fragment, [Fe(η4‐CpO)(CO)2C‐NHC(CH2)2NMe3)](I) ( 3 ), were prepared and characterized in terms of their structure, stability and reactivity. The photochemical properties of 2a and 2b were examined both in organic solvents and in water, revealing the photoactivated release of one CO ligand followed by the formation of the chelated complex [Fe(η4‐CpO)(CO)(κ2C,N‐NHC(CH2)2NH2)] ( 4 ), whose molecular structure was confirmed by single crystal X‐ray diffraction studies. This metallacyclization occurs only in the case of 2a , with the ethylene spacer between NHC ring and NH2 group in the lateral chain, allowing the formation of a stable 6‐membered ring. On the other hand, 2b undergoes decomposition upon irradiation. The reactivity in aqueous solutions revealed the chemical speciation of the complexes at different pH and especially under physiological conditions (phosphate buffer solution at pH 7.4 and 37 °C). The lack of data on the biological properties of iron(0) complexes prompted us to preliminarily investigate their cytotoxicity against model cancer cells (AsPC‐1 and HPAF‐II), along with a determination of their lipophilicity.  相似文献   

8.
A general regioselective rhodium‐catalyzed head‐to‐tail dimerization of terminal alkynes is presented. The presence of a pyridine ligand (py) in a Rh–N‐heterocyclic‐carbene (NHC) catalytic system not only dramatically switches the chemoselectivity from alkyne cyclotrimerization to dimerization but also enhances the catalytic activity. Several intermediates have been detected in the catalytic process, including the π‐alkyne‐coordinated RhI species [RhCl(NHC)(η2‐HC?CCH2Ph)(py)] ( 3 ) and [RhCl(NHC){η2‐C(tBu)?C(E)CH?CHtBu}(py)] ( 4 ) and the RhIII–hydride–alkynyl species [RhClH{? C?CSi(Me)3}(IPr)(py)2] ( 5 ). Computational DFT studies reveal an operational mechanism consisting of sequential alkyne C? H oxidative addition, alkyne insertion, and reductive elimination. A 2,1‐hydrometalation of the alkyne is the more favorable pathway in accordance with a head‐to‐tail selectivity.  相似文献   

9.
The new N‐heterocyclic carbene (NHC) precursors 4, ‐dicyano‐1, ‐dimesityl‐ ( 9 ) and 4, 5‐dicyano‐1, 3‐dineopentyl‐2‐(pentafluorophenyl)imidazoline ( 14 ) were synthesized. The structure of 9 could be determined by X‐ray crystallography. With the 2‐pentafluorophenyl‐substituted imidazolines 9 and 14 , the [AgCl(NHC)], [RhCl(COD)(NHC)], and [RhCl(CO)2(NHC)] complexes [NHC = 4, 5‐dicyano‐1, 3‐dimesitylimidazol‐2‐ylidene ( 3 ) and 4, 5‐dicyano‐1, 3‐dineopentylimidazol‐2‐ylidene ( 4 )] were obtained. Crystal structures of [AgCl( 3 )] ( 15 ), [RhCl(COD)( 3 )] ( 17 ), [RhCl(COD)( 4 )] ( 18 ), and [RhCl(CO)2( 3 )] ( 19 ) were solved and with the crystal data of 19 , the percent buried volume ( %Vbur) of 31.8(±0.1) % was determined for NHC 3 . Infrared spectra of the imidazolines 9 and 14 and of the complexes 15 – 20 were recorded and the CO stretching frequencies of complexes 19 and 20 were used to determine the Tolman electronic parameters of the newly obtained NHCs 3 (TEP: 2060 cm–1) and 4 (TEP: 2061 cm–1), thus proving that 1, 3‐substitution of maleonitrile‐NHCs does not have a significant effect for the high π‐acceptor strength of these carbenes.  相似文献   

10.
The NiII‐mediated tautomerization of the N‐heterocyclic hydrosilylcarbene L2Si(H)(CH2)NHC 1 , where L2=CH(C?CH2)(CMe)(NAr)2, Ar=2,6‐iPr2C6H3; NHC=3,4,5‐trimethylimidazol‐2‐yliden‐6‐yl, leads to the first N‐heterocyclic silylene (NHSi)–carbene (NHC) chelate ligand in the dibromo nickel(II) complex [L1Si:(CH2)(NHC)NiBr2] 2 (L1=CH(MeC?NAr)2). Reduction of 2 with KC8 in the presence of PMe3 as an auxiliary ligand afforded, depending on the reaction time, the N‐heterocyclic silyl–NHC bromo NiII complex [L2Si(CH2)NHCNiBr(PMe3)] 3 and the unique Ni0 complex [η2(Si‐H){L2Si(H)(CH2)NHC}Ni(PMe3)2] 4 featuring an agostic Si? H→Ni bonding interaction. When 1,2‐bis(dimethylphosphino)ethane (DMPE) was employed as an exogenous ligand, the first NHSi–NHC chelate‐ligand‐stabilized Ni0 complex [L1Si:(CH2)NHCNi(dmpe)] 5 could be isolated. Moreover, the dicarbonyl Ni0 complex 6 , [L1Si:(CH2)NHCNi(CO)2], is easily accessible by the reduction of 2 with K(BHEt3) under a CO atmosphere. The complexes were spectroscopically and structurally characterized. Furthermore, complex 2 can serve as an efficient precatalyst for Kumada–Corriu‐type cross‐coupling reactions.  相似文献   

11.
A series of new piano‐stool iron(II) complexes comprising N‐heterocyclic carbene ligands [Fe(Cp)(CO)2(NHC)]I (NHC = 1,3‐disubstituted imidazolidin‐2‐ylidene) have been synthesized and analyzed by 1H NMR, 13C NMR, IR, elemental analysis and mass spectrometric techniques. These compounds were easily prepared from the reaction of disubstituted imidazolidin‐2‐ylidene with [FeI(Cp)(CO)2] in toluene at room temperature. These complexes were tested in the catalytic hydrosilylation reaction of aldehydes and ketones with phenylsilane in solvent‐free conditions. After a basic hydrolysis step, the corresponding alcohols were obtained in good yields. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
Indenyl (Ind) rhodium N-heterocyclic carbene (NHC) complexes [Rh(η5-Ind)(NHC)(L)] were synthesised for 1,3-bis(2,6-diisopropylphenyl)-4,5-dihydroimidazol-2-ylidene (SIPr) with L=C2H4 ( 1 ), CO ( 2 a ) and cyclooctene (COE; 3 ), for 1,3-bis(2,4,6-trimethylphenyl)-4,5-dihydroimidazol-2-ylidene (SIMes) with L=CO ( 2 b ) and COE ( 4 ), and 1,3-bis(2,4,6-trimethylphenyl)imidazol-2-ylidene (IMes) with L=CO ( 2 c ) and COE ( 5 ). Reaction of SIPr with [Rh(Cp*)(C2H4)2] did not give the desired SIPr complex, thus demonstrating the “indenyl effect” in the synthesis of 1 . Oxidative addition of HSi(OEt)3 to 3 proceeded under mild conditions to give the Rh silyl hydride complex [Rh(Ind){Si(OEt)3}(H)(SIPr)] ( 6 ) with loss of COE. Tethered-fluorenyl NHC rhodium complexes [Rh{(η5-C13H8)C2H4N(C)C2HxNR}(L)] (x=4, R=Dipp, L=C2H4: 11 ; L=COE: 12 ; L=CO: 13 ; R=Mes, L=COE: 14 ; L=CO: 15 ; x=2, R=Me, L=COE: 16 ; L=CO: 17 ) were synthesised in low yields (5–31 %) in comparison to good yields for the monodentate complexes (49–79 %). Compounds 3 and 1 , which contain labile alkene ligands, were successful catalysts for the catalytic borylation of benzene with B2pin2 (Bpin=pinacolboronate, 97 and 93 % PhBpin respectively with 5 mol % catalyst, 24 h, 80 °C), with SIPr giving a more active catalyst than SIMes or IMes. Fluorenyl-tethered NHC complexes were much less active as borylation catalysts, and the carbonyl complexes were inactive. The borylation of toluene, biphenyl, anisole and diphenyl ether proceeded to give meta substitutions as the major product, with smaller amounts of para substitution and almost no ortho product. The borylation of octane and decane with B2pin2 at 120 and 140 °C, respectively, was monitored by 11B NMR spectroscopy, which showed high conversions into octyl and decylBpin over 4–7 days, thus demonstrating catalysed sp3 C−H borylation with new piano stool rhodium indenyl complexes. Irradiation of the monodentate complexes with 400 or 420 nm light confirmed the ready dissociation of C2H4 and COE ligands, whereas CO complexes were inert. Evidence for C−H bond activation in the alkyl groups of the NHC ligands was obtained.  相似文献   

13.
14.
The first reversible N-heterocyclic carbene (NHC) induced α-H abstraction in tungsten(VI) imido-dialkyl dialkoxide complexes is reported. Treatment of W(NAr)(CH2Ph)2(OtBu)2 (Ar=2,6-dichlorophenyl, 2,6-dimethylphenyl, 2,6-diisopropylphenyl) with different NHCs leads to the formation of complexes of the type W(NAr)(CHPh)(NHC)(CH2Ph)(OtBu) in excellent isolated yields of up to 96 %. The highly unusual release of the tert-butoxide ligand as tBuOH in the course of the reaction was observed. The formed alkylidene complexes and tBuOH are in an equilibrium with the NHC and the dialkyl complexes. Reaction kinetics were monitored by 1H NMR spectroscopy. A correlation between the steric and electronic properties of the NHC and the reaction rates was observed. Kinetics of a deuterium-labeled complex in comparison to its non-deuterated counterpart revealed the presence of a strong primary kinetic isotope effect (KIE) of 4.2, indicating that α-H abstraction is the rate-determining step (RDS) of the reaction.  相似文献   

15.
The reaction of cationic diolefinic rhodium(I) complexes with 2‐(diphenylphosphino)benzaldehyde (pCHO) was studied. [Rh(cod)2]ClO4 (cod=cycloocta‐1,5‐diene) reacted with pCHO to undergo the oxidative addition of one pCHO with (1,2,3‐η)cyclooct‐2‐en‐1‐yl (η3‐C8H13) formation, and the coordination of a second pCHO molecule as (phosphino‐κP)aldehyde‐κO(σ‐coordination) chelate to give the 18e acyl(allyl)rhodium(III) species [Rh(η3‐C8H13)(pCO)(pCHO)]ClO4 (see 1 ). Complex 1 reacted with [Rh(cod)(PR3)2]ClO4 (R=aryl) derivatives 3 – 6 to give stable pentacoordinated 16e acyl[(1,2,3‐η)‐cyclooct‐2‐en‐1‐yl]rhodium(III) species [Rh(η3‐C8H13)(pCO)(PR3)]ClO4 7 – 10 . The (1,2,3‐η)‐cyclooct‐2‐en‐1‐yl complexes contain cis‐positioned P‐atoms and were fully characterized by NMR, and the molecular structure of 1 was determined by X‐ray crystal diffraction. The rhodium(III) complex 1 catalyzed the hydroformylation of hex‐1‐ene and produced 98% of aldehydes (n/iso=2.6).  相似文献   

16.
Diimido, Imido Oxo, Dioxo, and Imido Alkylidene Halfsandwich Compounds via Selective Hydrolysis and α—H Abstraction in Molybdenum(VI) and Tungsten(VI) Organyl Complexes Organometal imides [(η5‐C5R5)M(NR′)2Ph] (M = Mo, W, R = H, Me, R′ = Mes, tBu) 4 — 8 can be prepared by reaction of halfsandwich complexes [(η5‐C5R5)M(NR′)2Cl] with phenyl lithium in good yields. Starting from phenyl complexes 4 — 8 as well as from previously described methyl compounds [(η5‐C5Me5)M(NtBu)2Me] (M = Mo, W), reactions with aqueous HCl lead to imido(oxo) methyl and phenyl complexes [(η5‐C5Me5)M(NtBu)(O)(R)] M = Mo, R = Me ( 9 ), Ph ( 10 ); M = W, R = Ph ( 11 ) and dioxo complexes [(η5‐C5Me5)M(O)2(CH3)] M = Mo ( 12 ), M = W ( 13 ). Hydrolysis of organometal imides with conservation of M‐C σ and π bonds is in fact an attractive synthetic alternative for the synthesis of organometal oxides with respect to known strategies based on the oxidative decarbonylation of low valent alkyl CO and NO complexes. In a similar manner, protolysis of [(η5‐C5H5)W(NtBu)2(CH3)] and [(η5‐C5Me5)Mo(NtBu)2(CH3)] by HCl gas leads to [(η5‐C5H5)W(NtBu)Cl2(CH3)] 14 und [(η5‐C5Me5)Mo(NtBu)Cl2(CH3)] 15 with conservation of the M‐C bonds. The inert character of the relatively non‐polar M‐C σ bonds with respect to protolysis offers a strategy for the synthesis of methyl chloro complexes not accessible by partial methylation of [(η5‐C5R5)M(NR′)Cl3] with MeLi. As pure substances only trimethyl compounds [(η5‐C5R5)M(NtBu)(CH3)3] 16 ‐ 18 , M = Mo, W, R = H, Me, are isolated. Imido(benzylidene) complexes [(η5‐C5Me5)M(NtBu)(CHPh)(CH2Ph)] M = Mo ( 19 ), W ( 20 ) are generated by alkylation of [(η5‐C5Me5)M(NtBu)Cl3] with PhCH2MgCl via α‐H abstraction. Based on nmr data a trend of decreasing donor capability of the ligands [NtBu]2— > [O]2— > [CHR]2— ? 2 [CH3] > 2 [Cl] emerges.  相似文献   

17.
Comproportionation of [Ni(cod)2] (cod=cyclooctadiene) and [Ni(PPh3)2X2] (X=Br, Cl) in the presence of six‐, seven‐ and eight‐membered ring N‐aryl‐substituted heterocyclic carbenes (NHCs) provides a route to a series of isostructural three‐coordinate NiI complexes [Ni(NHC)(PPh3)X] (X=Br, Cl; NHC=6‐Mes 1 , 6‐Anis 2 , 6‐AnisMes 3 , 7‐o‐Tol 4 , 8‐Mes 5 , 8‐o‐Tol 6 , O‐8‐o‐Tol 7 ). Continuous wave (CW) and pulsed EPR measurements on 1 , 4 , 5 , 6 and 7 reveal that the spin Hamiltonian parameters are particularly sensitive to changes in NHC ring size, N substituents and halide. In combination with DFT calculations, a mixed SOMO of ∣3d〉 and ∣3d〉 character, which was found to be dependent on the complex geometry, was observed and this was compared to the experimental g values obtained from the EPR spectra. A pronounced 31P superhyperfine coupling to the PPh3 group was also identified, consistent with the large spin density on the phosphorus, along with partially resolved bromine couplings. The use of 1 , 4 , 5 and 6 as pre‐catalysts for the Kumada coupling of aryl chlorides and fluorides with ArMgY (Ar=Ph, Mes) showed the highest activity for the smaller ring systems and/or smaller substituents (i.e., 1 > 4 ≈ 6 ? 5 ).  相似文献   

18.
A series of novel quasi‐scorpionate CNC donor ligands, MeC(2‐C5H4N){CH2(imidazole‐R)} (R = methyl, n‐butyl, n‐propenyl), in which a chelating bis(NHC) core is supplemented by a hemi‐labile pyridyl donor, were prepared. The coordination chemistry of these ligands was investigated with silver, palladium, rhodium and iridium. The single crystal X‐ray structures of [Rh(NC2Me)(COD)]Cl 8a and [Ir(NC2Pr)(COD)]Br 9b were determined. The catalytic potential of the rhodium and iridium complexes was assessed in the transfer hydrogenation of ketones; the iridium complexes, which show superior performance, form very effective and stable catalysts. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

19.
Iridium(I) compounds featuring bridge-functionalized bis-NHC ligands (NHC = N-heterocyclic carbene), [Ir(cod)(bis-NHC)] and [Ir(CO)2(bis-NHC)], have been prepared from the appropriate carboxylate- or hydroxy-functionalized bis-imidazolium salts. The related complexes [Ir(cod)(NHC)2]+ and [IrCl(cod)(NHC)(cod)] have been synthesized from a 3-hydroxypropyl functionalized imidazolium salt. These complexes have been shown to be robust catalysts in the oxidative dehydrogenation of glycerol to lactate (LA) with dihydrogen release. High activity and selectivity to LA were achieved in an open system under low catalyst loadings using KOH as a base. The hydroxy-functionalized bis-NHC catalysts are much more active than both the carboxylate-functionalized ones and the unbridged bis-NHC iridium(I) catalyst with hydroxyalkyl-functionalized NHC ligands. In general, carbonyl complexes are more active than the related 1,5-cyclooctadiene ones. The catalyst [Ir(CO)2{(MeImCH2)2CHOH}]Br exhibits the highest productivity affording TONs to LA up to 15,000 at very low catalyst loadings.  相似文献   

20.
Eight new N‐Hoveyda‐type complexes were synthesized in yields of 67–92 % through reaction of [RuCl2(NHC)(Ind)(py)] (NHC=1,3‐bis(2,4,6‐trimethylphenylimidazolin)‐2‐ylidene (SIMes) or 1,3‐bis(2,6‐diisopropylphenylimidazolin)‐2‐ylidene (SIPr), Ind=3‐phenylindenylid‐1‐ene, py=pyridine) with various 1‐ or 1,2‐substituted ferrocene compounds with vinyl and amine or imine substituents. The redox potentials of the respective complexes were determined; in all complexes an iron‐centered oxidation reaction occurs at potentials close to E=+0.5 V. The crystal structures of the reduced and of the respective oxidized Hoveyda‐type complexes were determined and show that the oxidation of the ferrocene unit has little effect on the ruthenium environment. Two of the eight new complexes were found to be switchable catalysts, in that the reduced form is inactive in the ring‐opening metathesis polymerization of cis‐cyclooctene (COE), whereas the oxidized complexes produce polyCOE. The other complexes are not switchable catalysts and are either inactive or active in both reduced and oxidized states.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号