共查询到20条相似文献,搜索用时 11 毫秒
1.
Jian Qi Shen 《Optics Communications》2010,283(22):4546-4550
Destructive and constructive quantum interferences exhibited in a four-level Y-configuration double-control atomic system are suggested. It is shown that the probe transition (driven by the probe field) can be manipulated by the quantum interferences between two control transitions (driven by the control fields) of the four-level system. The atomic vapor is opaque (or transparent) to the probe field if the destructive (or constructive) quantum interference between the control transitions emerges. The optically sensitive responses due to double-control quantum interferences can be utilized to realize some quantum optical and photonic devices such as the logic-gate devices, e.g., the NOT, OR, NOR and EXNOR gates. 相似文献
2.
Quantum state transfer (QST) and entangled state generation (ESG) are important building blocks for modern quantum information processing. To achieve these tasks, convention wisdom is to consult the quantum adiabatic evolution, which is time-consuming, and thus is of low fidelity. Here, using the shortcut to adiabaticity technique, we propose a general method to realize high-fidelity fast QST and ESG in a cavity-coupled many qubits system via its dark pathways, which can be further designed for high-fidelity quantum tasks with different optimization purpose. Specifically, with a proper dark pathway, QST and ESG between any two qubits can be achieved without decoupling the others, which simplifies experimental demonstrations. Meanwhile, ESG among all qubits can also be realized in a single step. In addition, our scheme can be implemented in many quantum systems, and we illustrate its implementation on superconducting quantum circuits. Therefore, we propose a powerful strategy for selective quantum manipulation, which is promising in cavity coupled quantum systems and could find many convenient applications in quantum information processing. 相似文献
3.
Trifluoromethanesulfonamide: X‐ray single‐crystal determination and quantum chemical calculations 下载免费PDF全文
The X‐ray single‐crystal structure of 1,1,1‐trifluoromethanesulfonamide (triflamide) CF3SO2NH2, which is the ancestor of a large family of its derivatives, has been determined. The crystal structure is composed of infinite layers with an interlayer distance of 3.4 Å. Geometry optimization at the Møller‐Plesset (MP2) and density functional theory (DFT) level showed the calculated bond distances to be, as a rule, longer than the experimental ones. A trial to simulate crystal packing effect on the geometrical parameters by calculating the dimer of triflamide in the gas phase failed – the starting X‐ray geometry of the ‘dimeric’ unit with one NH···O=S H‐bond – was optimized to the cyclic dimer with two H‐bonds. However, when the external (crystal) field effect was simulated using the polarizable continuum model, the experimental geometry of the ‘dimeric’ fragment was satisfactorily reproduced. Calculations of the heptamer cluster having the structure of the hexagon with six triflamide molecules in vertices and one in the middle nicely reproduce the X‐ray structure and brings the geometrical parameters closer to the experiment. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
4.
Revisiting the combined photon echo and single‐molecule studies of low‐temperature dynamics in a dye‐doped polymer 下载免费PDF全文
The photon echo (PE) spectroscopy and single‐molecule spectroscopy (SMS) may be combined to give a very powerful tool for comprehensive study of low‐temperature dynamics in dye‐doped disordered solids (polymers, glasses). At the same time, this type of studies are likely to reveal discrepancies when comparing characteristic times of optical dephasing T2 and single‐molecule zero‐phonon spectral lines (ZPL) broadening obtained from PE and SMS, correspondingly, for tetra‐tert‐butylterrylene in polyisobutylene in the temperature range of a few–dozen of Kelvins [see Phys. Status Solidi B 241 , 3480 and 3487 (2004)]. Inexplicably, PE‐experiments demonstrated T2‐times to be much shorter than it is sufficient to cause the corresponding ZPL broadening. Here we experimentally solve this problem and show that at T = 4.5–15 K the incoherent PE gives T2‐times which correspond to the narrowest SM ZPL. On the SM‐level there is a pronounced additional ZPL‐broadening due to spectral diffusion processes which are strongly dependent on the characteristics time of the measurement (tens of nanoseconds for PE and seconds for SMS). There is also a broad distribution of ZPL spectral widths for different SMs due to different local environments, that contribute differently to both the optical dephasing and the spectral diffusion processes, but always in addition to the value of inverse optical dephasing times measured using a PE technique.
5.
6.
We review the basic light‐matter interactions and optical properties of chip‐based single photon sources, that are enabled by integrating single quantum dots with planar photonic crystals. A theoretical framework is presented that allows one to connect to a wide range of quantum light propagation effects in a physically intuitive and straightforward way. We focus on the important mechanisms of enhanced spontaneous emission, and efficient photon extraction, using all‐integrated photonic crystal components including waveguides, cavities, quantum dots and output couplers. The limitations, challenges, and exciting prospects of developing on‐chip quantum light sources using integrated photonic crystal structures are discussed. 相似文献
7.
8.
A. V. Kozlovskii 《Optics and Spectroscopy》2016,120(4):596-604
It is shown that the Heisenberg uncertainty relation (or soft uncertainty relation) determined by the commutation properties of operators of electromagnetic field quadratures differs significantly from the Robertson–Schrödinger uncertainty relation (or rigorous uncertainty relation) determined by the quantum correlation properties of field quadratures. In the case of field quantum states, for which mutually noncommuting field operators are quantum-statistically independent or their quantum central correlation moment is zero, the rigorous uncertainty relation makes it possible to measure simultaneously and exactly the observables corresponding to both operators or measure exactly the observable of one of the operators at a finite measurement uncertainty for the other observable. The significant difference between the rigorous and soft uncertainty relations for quantum superpositions of coherent states and the two-photon coherent state of electromagnetic field (which is a state with minimum uncertainty, according to the rigorous uncertainty relation) is analyzed. 相似文献
9.
10.
Modulation of energy spectrum and control of coherent microwave transmission at single-photon level by longitudinal field in a superconducting quantum circuit 下载免费PDF全文
We study the effect of longitudinally applied field modulation on a two-level system using superconducting quantum circuits. The presence of the modulation results in additional transitions and changes the magnitude of the resonance peak in the energy spectrum of the qubit. In particular, when the amplitude λ_z and the frequency ω_l of the modulation field meet certain conditions, the resonance peak of the qubit disappears. Using this effect, we further demonstrate that the longitudinal field modulation of the Xmon qubit coupled to a one-dimensional transmission line could be used to dynamically control the transmission of single-photon level coherent resonance microwave. 相似文献
11.
A three‐crystal spectrometer for high‐energy resolution fluorescence‐detected X‐ray absorption spectroscopy and X‐ray emission spectroscopy at SSRF 下载免费PDF全文
A Johann‐type spectrometer for the study of high‐energy resolution fluorescence‐detected X‐ray absorption spectroscopy, X‐ray emission spectroscopy and resonant inelastic X‐ray scattering has been developed at BL14W1 X‐ray absorption fine structure spectroscopy beamline of Shanghai Synchrotron Radiation Facility. The spectrometer consists of three crystal analyzers mounted on a vertical motion stage. The instrument is scanned vertically and covers the Bragg angle range of 71.5–88°. The energy resolution of the spectrometer ranges from sub‐eV to a few eV. The spectrometer has a solid angle of about 1.87 × 0?3 of 4π sr, and the overall photons acquired by the detector could be 105 counts per second for the standard sample. The performances of the spectrometer are illustrated by the three experiments that are difficult to perform with the conventional absorption or emission spectroscopy. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献
12.
R. T. Bailey F. R. Cruickshank T. J. Dines N. Sherwood M. C. Tedford 《Journal of Raman spectroscopy : JRS》2011,42(5):1174-1184
Single‐crystal Raman and polycrystalline thin‐film infrared measurements have been obtained for the polar organic nonlinear optical material 2‐(α‐methylbenzylamino)‐5‐nitropyridine (MBANP). For comparison, thin‐film polycrystalline infrared measurements were also made on 2‐(α‐methylbenzylamino)‐3,5‐dinitropyridine (MBADNP). The long wavelength electronic absorption was measured in several solvents and as a thin solid film. The Raman spectra are dominated by three intense bands attributed to vibrations of the ring, the NO2 substituent, and the N H bond. The most intense scattering and absorption arose from the αbb component of the polarisability tensor. This implies that the most significant contribution to the transition polarisability arises from the electronic transition near 383 nm, polarised along the b‐axis of the crystal. The strongest bands in the infrared spectra are also associated with the same three bands, consistent with the predictions of the effective conjugation coordinate (ECC) theory, implying efficient electron–phonon coupling (or electronic delocalisation) in the conjugated system. DFT calculations of vibrational wavenumbers and eigenvectors were used to assign relevant vibrational features and to derive useful information about the molecular structure. This single‐crystal material is also a strong candidate for an efficient laser Raman converter with a large wavenumber shift of 3404 cm−1 and a high damage threshold. Copyright © 2010 John Wiley & Sons, Ltd. 相似文献
13.
Retraction: The following article from Journal of Raman Spectroscopy, ‘A comparative Raman study of graphite, single‐walled, and multi‐walled carbon nanotubes’, by Animesh K. Ojha and Arnulf Materny published online on 3 March 2009 in Wiley InterScience ( www.interscience.wiley.com ), has been retracted by agreement between the authors, the journal Editor in Chief, Wolfgang Kiefer, and the publisher John Wiley & Sons, Ltd. The retraction has been agreed due to lack of citation or acknowledgement of third party interests in certain data included in the article. 相似文献
14.
Sukesh Roy Paul J. Wrzesinski Dmitry Pestov Marcos Dantus James R. Gord 《Journal of Raman spectroscopy : JRS》2010,41(10):1194-1199
Coherent anti‐Stokes Raman scattering (CARS) spectroscopy of gas‐phase CO2 is demonstrated using a single femtosecond (fs) laser beam. A shaped ultrashort laser pulse with a transform‐limited temporal width of ∼7 fs and spectral bandwidth of ∼225 nm (∼3500 cm−1) is employed for simultaneous excitation of the CO2 Fermi dyads at ∼1285 and ∼1388 cm−1. CARS signal intensities for the two Raman transitions and their ratio as a function of pressure are presented. The signal‐to‐noise ratio of the single beam–generated CO2 CARS signal is sufficient to perform concentration measurements at a rate of 1 kHz. The implications of these experiments for measuring CO2 concentrations and rapid pressure fluctuations in hypersonic and detonation‐based chemically reacting flows are also discussed. Copyright © 2010 John Wiley & Sons, Ltd. 相似文献
15.
S. A. Podoshvedov 《Journal of Experimental and Theoretical Physics》2007,104(4):545-553
The nonlinear χ(2) Mach-Zehnder interferometer is proposed as a device for conditional generation of a modified coherent nonclassical state.
We show that the generated macroscopic state exhibits nonclassical effects, such as squeezing, photon antibunching, and sub-Poissonian
statistics. The modified coherent state generates a macroscopic entangled state. The scheme works without the photon number
resolving detection but requires high-efficiency photodetectors. We explain the mechanism of generation of the modified coherent
non-classical state.
The text was submitted by the author in English. 相似文献
16.
Ivan S. Maksymov 《Physics letters. A》2011,375(19):2035
A typographical error has been corrected. 相似文献
17.
Electrons are among the lightest quantum particles in nature, yet they are of paramount importance in any kind of chemical reaction as they are the essence of molecular bonds. For several years, laser fields have been used towards the final goal of controlling chemical reaction dynamics. While early experiments focused mainly on the control of the internuclear wavefunction of rather heavy molecules, advances in short‐pulse laser technology now allow the control of lighter molecules all the way down to hydrogen and even the direct control of electrons and their quantum wavefunctions. In this context, the stabilization and control of the carrier‐envelope phase (CEP) of laser pulses has been one of the crucial technological advances that set off a revolution in ultrafast laser science. The authors review and summarize some of the past and current experimental achievements and theoretical ideas on CEP laser control of electrons. It will become clear that in some cases, depending on the control scenario, electrons can be considered to behave as classical particles and the control of their trajectories follow the laws of classical Newtonian mechanics while in other cases, the quantum nature of electrons is directly exploited to steer electron dynamics by means of quantum interference. 相似文献
18.
The liquid phase FTIR and FT‐Raman spectra of 1,3‐dibromo‐2,4,5,6‐tetrafluoro benzene (DTB) and 1,2,3,4,5‐pentafluoro benzene (PB) were recorded in the regions 4000–400 cm−1 and 4000–50 cm−1, respectively. The spectra were interpreted with the aid of normal coordinate analysis following full structure opti1mization and force field calculations based on the density functional theory using the standard B3LYP/6‐31G* method and basis set combination. The scaled force field reproduced the experimental wavenumbers of the molecule for DTFB and PFB, respectively. The effects of halogen substituents on the structure and vibrational wavenumbers have been investigated. Assignments of fundamental modes were made based on the comparison between calculated and experimental results. Copyright © 2009 John Wiley & Sons, Ltd. 相似文献
19.
A detailed DFT/TDDFT study on excited‐state intramolecular hydrogen bonding dynamics and proton‐transfer mechanism of 2‐phenanthro[9,10‐d]oxazol‐2‐yl‐phenol 下载免费PDF全文
Tianjie Zhang Guang Yang Min Jia Xiaoyan Song Qiaoli Zhang Dapeng Yang 《Journal of Physical Organic Chemistry》2018,31(10)
In this present work, using density functional theory and time‐dependent density functional theory methods, we theoretically study the excited‐state hydrogen bonding dynamics and the excited state intramolecular proton transfer mechanism of a new 2‐phenanthro[9,10‐d]oxazol‐2‐yl‐phenol (2PYP) system. Via exploring the reduced density gradient versus sign(λ2(r))ρ(r), we affirm that the intramolecular hydrogen bond O1‐H2?N3 is formed in the ground state. Based on photoexcitation, comparing bond lengths, bond angles, and infrared vibrational spectra involved in hydrogen bond, we confirm that the hydrogen bond O1‐H2?N3 of 2PYP should be strengthened in the S1 state. Analyses about frontier molecular orbitals prove that charge redistribution of 2PYP facilitates excited state intramolecular proton transfer process. Via constructing potential energy curves and searching transition state structure, we clarify the excited state intramolecular proton transfer mechanism of 2PYP in detail, which may make contributions for the applications of such kinds of system in future. 相似文献