首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Co(II), Ni(II), Cu(II) and Zn(II) complexes of a novel tridentate heterocyclic ligand, 3‐{[(2‐benzoyl‐4‐chlorophenyl)imino]methyl}quinoxalin‐2(1H)‐one, have been synthesized. The ligand and the metal complexes were characterized using elemental analysis, molar conductance and magnetic susceptibility measurements, and UV–visible, Fourier transform infrared, 1H NMR, 13C NMR, electron spin resonance and DART mass spectral data. The ligand behaves as a tridentate one, coordinating through two oxygen atoms from two keto groups and through the azomethine nitrogen atom. The thermal properties of the newly synthesized compounds were determined using thermogravimetric analysis. The ligand and its metal complexes were subjected to powder X‐ray diffraction analysis by which average crystallite size and unit cell parameters were calculated. The electrochemical behaviour of the compounds was studied using cyclic voltammetry. The ligand and the metal complexes were screened for their in vitro antimicrobial activities against the bacterial strains E. coli, K. pneumoniae, S. pneumoniae and S. aureus and the fungal species A. niger, A. flavus, P. chrysogenum and R. stolonifer. DNA binding, DNA cleavage and antioxidant activities of the compounds were also evaluated. The compounds bind with DNA through groove binding. The Cu(II) and Zn(II) complexes exhibit higher superoxide anion and hydrogen peroxide scavenging activities, respectively. The Cu(II) complex exhibits better anticancer activity against the MCF7 cell line. The compounds were subjected to molecular docking study against B‐DNA dodecamer d(CGCGAATTCGCG)2 and vascular endothelial growth factor receptor kinase to justify the experimental DNA binding and MTT assay. Density functional theory studies were used to optimize the geometry of the compounds and to calculate the nonlinear optical properties. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

2.
3‐3′‐Benzylidenebis[4‐hydroxycoumarin] or 4‐nitro,3‐3′‐benzylidenebis[4‐hydroxycoumarin] or 4‐methoxy,3‐3′‐benzylidenebis[4‐hydroxycoumarin] and their complexes with Cu(II), Fe(II) and Fe(III) were synthesized and characterized using 1H‐NMR, 13C‐NMR, IR spectra, electronic spectra, magnetic measurements and elemental analyses. The ligands, metal salts, complexes, control and standard drug were tested for their in‐vitro antibacterial activity against Bacillus cereus, Staphylococcus aureus, Escherichia coli, Bacillus subtilis, Salmonella typhi, and Serratia marcescens. The metal complexes exhibit good activity against bacterial strains compared with parental compounds and moderate compared with the standard drug (ciprofloxacin). In‐vitro DNA‐binding activity was carried out using agarose gel electrophoresis. The synthesized compounds show effective DNA‐binding activity. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

3.
A novel tetradentate dianionic Schiff base ligand, N ,N ′‐bis(2‐carboxyphenylimine)‐2,5‐thiophenedicarboxaldhyde (H2L) and some first row d‐transition metal chelates (Co(II), Cu(II), Ni(II) and Zn(II)) were synthesized and characterized using various physicochemical and spectroscopic methods. The spectroscopic data suggested that the parent Schiff base ligand coordinates through both deprotonated carboxylic oxygen and imine nitrogen atoms. The free Schiff base and its metal chelates were screened for their antimicrobial activities for various pathogenic bacteria and fungi using the agar well diffusion method. The antibacterial and antifungal activities of all the newly synthesized compounds are significant compared to the standard drugs ciprofloxacin and nystatin. The antioxidant activities of the compounds were determined by reduction of 1,1‐diphenyl‐2‐picrylhydrazyl and compared with that of vitamin C as a standard. DNA binding ability of the novel Schiff base and its complexes was investigated using absorption spectroscopy, fluorescence spectroscopy, viscosity measurements and thermal denaturation. The obtained results clearly demonstrate that the binding affinity with calf thymus DNA follows the order: Cu(II) complex > Ni(II) complex > Zn(II) complex > Co(II) complex >H2L. Furthermore, the DNA cleavage activity of the newly synthesized ligand and its metal complexes was investigated using supercoiled plasmid DNA (pUC18) gel electrophoresis.  相似文献   

4.
Three novel Cr(III),VO(II) and Ni(II) imine complexes derived from the condensation of 2‐aminophenol (AP) with 2‐hydroxynaphthaldehyde (HN) were synthesized. The prepared HNAP imine ligand and its complexes were investigated via various physicochemical tools. The results suggest that the parent ligand behaves as a dibasic tridentate ONO ligand, when coordinated to Cr(III) in octahedral and to Ni(II) in tetrahedral geometry. In the case of VO(II), it coordinates in distorted square pyramidal geometry. Also, the prepared compounds were screened for their antimicrobial activities against pathogenic bacteria, Escherichia coli (−ve), Bacillus subtilis (+ve) and Staphylococcus aureus (+ve), and some types of fungi, Aspergillus niger , Candida glabrata and Trichophyton rubrum . The results indicate that the complexes show a stronger antimicrobial efficiency compared to the pro‐ligand. The interaction of the prepared complexes with calf thymus DNA was investigated using spectral, viscosity and gel electrophoresis measurements. The obtained results clearly demonstrate that the binding affinity with calf thymus DNA follows the order HNAPCr > HNAPV > HNAPNi. The cytotoxic activity of the prepared compounds on human colon carcinoma cells (HCT‐116 cell line), hepatic cellular carcinoma cells (HepG‐2cell line) and breast carcinoma cells (MCF‐7cell line) was examined. From these results it is found that the investigated complexes have potent cytotoxicity against growth of carcinoma cells compared to the corresponding imine pro‐ligand.  相似文献   

5.
Cu(II), Ni(II) and Zn(II) complexes of (E)‐2‐((2,4‐dihydroxybenzylidene)amino)‐3‐(1H‐indol‐3‐yl)propanoic acid Schiff base ( L ) were synthesized and characterized by various spectral methods. ESI‐MS was used to confirm the structure of synthesized compounds. Molecular geometries of the complexes were predicted by optimizing the structure by DFT/B3LYP method with LANL2DZ basis set in the gas phase. The interaction of the metal complexes with CT‐DNA and BSA protein has been examined by UV‐vis, fluorescence and viscometer titrations reveal that the complexes bind to DNA through intercalation binding mode. The copper complexes exhibit effective cleavage of pUC19 DNA by the oxidative mechanism. The synthesized compounds screened for their antibacterial activities against various bacteria strains exhibit the L and copper complex show potential activity against Pseudomonas aeruginosa and Escherichia coli, respectively. Subsequently, molecular docking studies were performed on to understand the binding of the compounds with DNA, BSA and bacteria.  相似文献   

6.
The cobalt(II) complexes [Co(Cl)2(met)(o‐phen)] ( 1 ), [Co(Cl)2(en)(met)] ( 2 ) and [Co(Cl)2(met)(opda)] ( 3 ) (met = metformin, o‐phen = ortho‐phenanthroline, en = ethylenediamine, opda = ortho‐phenylenediamine) were synthesized and characterized using liquid chromatography–mass spectrometry, elemental analysis, molar conductance measurements, thermal analysis, infrared spectroscopy, magnetic moment measurements, electronic spectroscopy and X‐ray diffraction. The metal centre was found to be in an octahedral geometry. UV–visible absorption, fluorescence and viscosity measurements were conducted to assess the interaction of the complexes with calf thymus DNA. The complexes showed absorption hyperchromism in UV–visible spectra with DNA. The binding constants from UV–visible absorption studies were 1.38 × 105, 2.1 × 105 and 3.1 × 105 M?1 for 1 , 2 and 3 , respectively, and Stern–Volmer quenching constants from fluorescence studies were 0.146, 0.176 and 0.475, respectively. Viscosity measurements revealed that the binding of the complexes with DNA could be surface binding, mainly due to groove binding. The activities of the complexes in DNA cleavage decrease in the order 3 > 2 > 1 . The complexes were docked into DNA topoisomerase II using Discovery Studio 2.1 software.  相似文献   

7.
This study was conducted to prepare novel azomethine chelates of Cu(II), Pd(II), Zn(II) and Cr(III) with tridentate dianionic azomethine OVAP ligand 2‐[(2‐hydroxyphenylimino)methyl]‐6‐methoxyphenol. The prepared compounds were characterized using elemental analyses and spectral, conductivity, magnetic and thermal measurements. The spectroscopic data suggest that the parent azomethine ligand binds to the investigated metal ions through both deprotonated phenol oxygen and azomethine nitrogen atoms, and adopts distorted octahedral geometry in the case of Cr(III) and Cu(II) ions while tetrahedral and square planar geometries for Zn(II) and Pd(II) ions, respectively. In order to confirm the molecular geometry of the investigated azomethine chelator and its complexes, theoretical density functional theory calculations were employed. Correlation between experimental observations and theoretical calculations of geometry optimization results are in a good agreement. Absorption titration was used to explore the interaction of the investigated azomethine metal chelates with calf thymus DNA, and the binding constant as well as Gibbs free energy were evaluated. Viscosity measurements and gel electrophoresis studies suggest intercalative and replacement binding modes of the azomethine metal chelates with calf thymus DNA. Additionally, the antimicrobial activity of the complexes was screened against some pathogenic bacteria and fungi. This biological study shows that the complexes exhibit a marked inhibitory effect compared to the corresponding ligand and standard drug s. Furthermore, the effect of the novel compounds as antioxidants was determined by reduction of 1,1‐diphenyl‐2‐picrylhydrazyl and compared with that of vitamin C. Finally, in vitro cell proliferation via MTT assay was investigated against colon carcinoma cells (HCT‐116), hepatic cellular carcinoma cells (HepG‐2(and breast carcinoma cells (MCF‐7) to calculate the cytotoxicity of the prepared compounds. Cell proliferation is inhibited for all compounds and in a dose‐dependent manner in the sequence of OVAPPd > OVAPCu > OVAPZn > OVAPCr > OVAP azomethine ligand.  相似文献   

8.
A novel oxazon‐Schiff's base ligand named (E)‐3‐(2‐(4‐(diethylamino)‐2‐hydroxybenzylidene)hydrazineyl)‐2H‐benzo[b][1,4]oxazin‐2‐one (HL) has been synthesized in addition to its nano‐sized divalent and tetravalent Mn (II), Co (II), Ni (II), Cu (II), Zn (II) and Pt (IV) complexes. The structures and geometries of the synthesized compounds have been confirmed using the different analytical and spectroscopic tools such as elemental analysis, uv–vis., IR, HR‐MS, 1H NMR, ESR, TGA, XRD, EDX, TEM, SEM, AFM, magnetic and molar conductivity measurements. The elemental analyses confirm 1 M: 2 L stoichiometry of the type [PtL2].2Cl and [ML2] (M = Mn (II), Co (II), Ni (II), Cu (II) and Zn (II)). The FT‐IR spectral studies illustrated that the ligand bind to the metal ions through the phenolic hydroxy oxygen, azo methine nitrogen carbonyl oxazin oxygen. The spectral tools; UV–Vis, ligand field parameters and ESR in addition to the magnetic moment measurements confirmed octahedral geometry around the metal centres. The absence of coordinated or hydrated water complexes were confirmed by thermal analysis data of the complexes. The electron transfer reactions for the complexes have been studied by cyclic voltammetry. XRD, SEM, TEM, and AFM images confirmed nano‐sized particles and homogeneous distribution over the complex surface. The mode of binding of the complexes with DNA has been performed through electronic absorption titration and viscosity studies. The reaction between the metal complexes and DNA were studied by DNA cleavage. In general, MCF‐7 cell were least sensitive to the tested compounds and all compounds were considerably more toxic to the studied cancer cell lines than to the normal cell line HepG‐2. The binding mode of the compounds and DNA was preferably via intercalation. In addition, these results were confirmed based on theoretical studies . Finally, a linear and exponential correlation between interaction constant (Kb) and IC50 for two human cancer cell was observed.  相似文献   

9.
A new bioessential Knoevenagel condensate Schiff base ligand (L) was synthesized by the reaction of 3‐(4‐hydroxy‐3‐methoxybenzyl)pentane‐2,4‐dione and 4‐aminoantipyrine. The ligand forms monomeric divalent transition metal complexes ( 1 – 4 ) which were characterized using spectral and analytical data. All these complexes have the general formula [ML]Cl2, where M = Co(II), Ni(II), Cu(II) and Zn(II). They are electrolytic in nature and adopt square planar geometry. The binding propensity of these complexes with calf thymus DNA was investigated using absorption spectrophotometric titration, cyclic voltammetry and viscosity measurements. The binding constant values imply that the complexes bind with DNA via intercalation mode. The in vitro antibacterial and antifungal activities reveal that the complexes have good antimicrobial efficacy against a set of pathogens. The nucleolytic cleavage activity of these complexes on pUC18 DNA was investigated using agarose gel electrophoresis. Also, the in vitro cytotoxicity of the synthesized complexes against a panel of human tumour cell lines (MCF‐7 and HeLa) and normal cell lines (NHDF and HEK) was assayed using the MTT method. Interestingly, complex 1 exhibits more potent anticancer activity than cisplatin and other complexes.  相似文献   

10.
New palladium(II) complexes, [Pd(PPh3)L] ( 2 ) and [Pd(AsPh3)L] ( 3 ), were synthesized using 4‐hydroxybenzoic acid (3‐ethoxy‐2‐hydroxybenzylidene)hydrazide ( 1 ) ligand (H2L), and characterized using various physicochemical techniques. The molecular structures of 2 and 3 were determined using single‐crystal X‐ray diffraction, which reveals a square planar geometry around the palladium(II) metal ion. In vitro DNA binding studies were conducted using UV–visible absorption spectroscopy, emission spectroscopy, cyclic voltammetry and viscosity measurements, which suggest that the metal complexes act as efficient DNA binders. The interaction of ligand H2L and complexes 2 and 3 with bovine serum albumin (BSA) was investigated using UV–visible and fluorescence spectroscopies. Absorption and emission spectral studies indicate that complexes 2 and 3 interact with BSA protein more strongly than the parent ligand. The free radical scavenging potential of all the synthesised compounds ( 1 – 3 ) was also investigated under in vitro conditions. In addition, the in vitro cytotoxicity of the complexes to tumour cells lines (HeLa and MCF‐7) was examined using the MTT assay method.  相似文献   

11.
Four new transition metal complexes incorporating a Schiff base ligand derived from propylenediamine and 4‐formyl‐N ,N ‐dimethylaniline have been synthesized using transition metal salts. The characterization of the newly formed complexes was done from physicochemical parameters and using various techniques like 1H NMR, 13C NMR, IR, UV, electron paramagnetic resonance and mass spectroscopies, powder X‐ray diffraction and magnetic susceptibility. All the complexes were found to be monomeric in nature with square planar geometry. X‐ray powder diffraction illustrates that the complexes have a crystalline nature. The interaction of metal complexes with calf thymus DNA was investigated using UV–visible absorption, viscosity measurements, cyclic voltammetry, emission spectroscopy and docking analysis. The results indicate that the Cu(II), Co(II), Ni(II) and Zn(II) complexes interact with DNA by intercalative binding mode with optimum intrinsic binding constants of 4.3 × 104, 3.9 × 104, 4.7 × 104 and 3.7 × 104 M−1, respectively. These DNA binding results were rationalized using molecular docking in which the docked structures indicate that the metal complexes fit well into the A‐T rich region of target DNA through intercalation. The metal complexes exhibit an effective cleavage with pUC19 DNA by an oxidative cleavage mechanism. The synthesized ligand and the complexes were tested for their in vitro antimicrobial activity. The complexes show enhanced antifungal and antibacterial activities compared to the free ligand.  相似文献   

12.
A novel bi‐nucleating Schiff base ligand, 6,6′‐(((1E,1′E)‐thiophene‐2,5‐diylbis (methaneylylidene))bis (azaneylylidene))bis (3,4‐dimethylaniline), and five binuclear M (II) complexes were synthesized. The bi‐nucleating Schiff base ligand and its metal complexes were characterized using various physicochemical techniques, e.g. elemental analyses, spectroscopic methods, conductivity and magnetic moment measurements. The low molar conductance of the complexes in dimethylsulfoxide shows their non‐electrolytic nature. The antibacterial activities were screened against pathogenic bacteria (Staphylococcus aureus, Escherichia coli, Pseudomonas putida and Bacillus subtilis). The antifungal activity was screened against Aspergillus niger, Aspergillus flavus and Rhizoctonia bataicola. The antimicrobial activity data showed that the metal complexes are more potent than the parent Schiff base ligand against microorganisms. The antioxidant activities of the synthesized compounds were investigated through scavenging activity against 2,2‐diphenyl‐2‐picrylhydrazyl, superoxide anion, hydroxyl and 2,2′‐ azinobis (3‐ethylbenzothiazoline‐6‐sulfonic acid) radicals. The complexes have superior radical scavenging activity than the free ligand and the scavenging effects of the Cu (II) complex are stronger than those of the other complexes. DNA binding studies were performed using electronic spectroscopy, fluorometric competition studies and viscosity measurements. The data indicated that there is a marked enhancement in biocidal activity of the ligand under similar experimental conditions because of coordination with metal ions.  相似文献   

13.
Five new mononuclear zinc(II) complexes containing ligands with extended planar phenanthroline moieties (dipyrido‐[3,2‐a:2′,3′‐c]phenazine (dppz) or dipyrido[3,2‐d:2′,3′‐f] quinoxaline (dpq)), namely [Zn(dppz)(acac)2]⋅CH3OH ( 1 ), [Zn(dppz)(dbm)(OAc)] ( 2 ), [Zn(dpq)(dbm) (OAc)] 1.5H2O ( 3 ), [Zn(dpq)(tfnb)(OAc)] ( 4 ) and [Zn(dpq)(tfnb)2] ( 5 ), where acac = acetylacetonate, tfnb = benzoyltrifluoroacetone and dbm = dibenzoylmethane, were synthesized and structurally characterized. The binding ability of complexes 1 – 5 with calf thymus DNA was investigated by spectroscopic titration methods and viscosity measurements. Results indicate that all complexes bind to calf thymus DNA via intercalative mode, and the DNA binding affinities of dppz complexes 1 and 2 are apparently stronger than those of dpq complexes 3 – 5 . DNA photocleavage experiments reveal that these complexes are efficient DNA cleaving agents and they are more active in UV‐A (365 nm) than in visible light. In particular, the in vitro cytotoxicity of the complexes for human cancer cell line A549 demonstrates that the five compounds have anticancer activity with low IC50 values. Meanwhile, interaction of the complexes with bovine serum albumin investigated using UV–visible and fluorescence methods indicates that all complexes can quench the intrinsic fluorescence of bovine serum albumin in a static quenching process.  相似文献   

14.
A new series of transition metal complexes of Cu(II), Co(II), Ni(II), Mn(II) and Cd(II) were prepared from the ligand of 5‐(4‐benzenesulfonic acid azo)‐2‐thioxo‐4‐thiazolidinone (H2L). The M(II) complexes were structurally elucidated by elemental analysis, infrared spectra, spectral studies, thermal analysis, magnetic measurements and X‐ray diffraction analysis. Elemental analysis and IR result suggested the ligand was bonded to the metal ions in monobasic/neutral bidentate through the nitrogen atom of the hydrazone group and oxygen atom of carbonyl group. The bond length, bond angle, HOMO, LUMO and quantum chemical parameters were calculated to confirm the geometry of the ligand and the M(II) complexes. In vitro antimicrobial behavior of ligand (H2L) and its M(II) complexes (1‐5) was screened with targeted bacterial and fungal strains. Spectroscopic (UV‐vis) technique was employed in order to study the binding mode and binding strength of the ligand (H2L) and its M(II) complexes to Calf thymus DNA (CT‐DNA). Intercalation is the most possible mode of interaction of the ligand (H2L) and its M(II) complexes with CT‐DNA and the determined binding constants. Molecular docking was used to predict the binding between the starts (4‐aminobenzenesulfonic acid (start 1) and 2‐thioxo‐4‐thiazolidinone (start 2)) and tautomers (A‐C) of ligand (H2L) with the receptors of prostate cancer mutant (PDB code: 2Q7K) and breast cancer mutant (PDB code: 3HB5).  相似文献   

15.
Various nitrile‐functionalized benzimidazol‐2‐ylidene carbene complexes of Hg(II) and Ag(I) were synthesized by the interaction of 1‐benzyl/1‐butyl‐3‐(cyano‐benzyl)‐3 H‐benzimidazol‐1‐ium mono/dihexafluorophosphate with Hg(OAc)2/Ag2O in acetonitrile. Two of the benzimidazolium salts were structurally characterized by single crystal X‐ray diffraction technique. Structures of reported compounds were characterized by 1 H, 13C NMR, FT‐IR, UV–visible spectroscopic techniques, and molar conductivity and elemental analyses. For bis‐benzimidazolium salt, dinuclear Hg(II)– and Ag(I)–carbene complexes were obtained. Nuclease activity and binding interactions of the synthesized benzimidazolium salts and their Ag(I)–carbene complexes with DNA were studied using agarose gel electrophoresis and, absorption spectroscopy and viscosity measurements, respectively. Ag(I)–carbene complexes showed higher DNA binding activity compared to their respective benzimidazolium salts. However, a benzimidazolium salt and two of the Ag(I) complexes showed remarkably higher nuclease activity both, in the presence and absence of an oxidizing agent. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
A series of novel cytotoxic compounds, [Mn(cpt)2], [Zn(tpt)(H2O)2]?DMA?2(H2O) and [Cu(tpt)]?DMA (cpt = 4′‐(4‐carboxyphenyl)‐2,2′:6′,2″‐terpyridine, tpt = 4‐(2,4,6‐tricarboxylphenyl)‐2,2′:6′,2″‐terpyridine, DMA = (CH3)2NH), were isolated and characterized. The structures of these complexes were characterized using single‐crystal X‐ray diffraction. The mode and extent of binding between fish sperm DNA and the complexes were investigated using fluorescence spectroscopy and molecular docking. These results indicate the ability of the complexes to bind to DNA with different binding affinities. The binding of the Zn(II) complex with DNA is stronger than that of the corresponding Cu(II) analogue, which is expected due to the z* effect and geometry. The ability of these complexes to cleave pBR322 plasmid DNA was demonstrated using gel electrophoresis assay, showing that the complexes have effective DNA cleavage activity. In addition, the cytotoxic effects of these complexes were examined on HeLa cells (human cervix epithelia carcinoma cells) in vitro. The three complexes exhibit different cytotoxic effects and decent cancer cell inhibitory rate. This means that the structures and type of metal have a great influence on the activity of these novel complexes.  相似文献   

17.
Two novel chiral ruthenium(II) complexes, Δ‐[Ru(bpy)2(dmppd)]2+ and Λ‐[Ru(bpy)2(dmppd)]2+ (dmppd = 10,12‐dimethylpteridino[6,7‐f] [1,10]phenanthroline‐11,13(10H,12H)‐dione, bpy = 2,2′‐bipyridine), were synthesized and characterized by elemental analysis, 1H‐NMR and ES‐MS. The DNA‐binding behaviors of both complexes were studied by UV/VIS absorption titration, competitive binding experiments, viscosity measurements, thermal DNA denaturation, and circular‐dichroism spectra. The results indicate that both chiral complexes bind to calf‐thymus DNA in an intercalative mode, and the Δ enantiomer shows larger DNA affinity than the Λ enantiomer does. Theoretical‐calculation studies for the DNA‐binding behaviors of these complexes were carried out by the density‐functional‐theory method. The mechanism involved in the regulating and controlling of the DNA‐binding abilities of the complexes was further explored by the comparative studies of [Ru(bpy)2(dmppd)]2+ and of its parent complex [Ru(bpy)2(ppd)]2+ (ppd = pteridino[6,7‐f] [1,10]phenanthroline‐11,13 (10H,12H)‐dione).  相似文献   

18.
A novel tetradentate N2O2 type of Knoevenagel condensate Schiff base, synthesized from 4‐amino‐2,3‐dimethyl‐1‐phenyl‐3‐pyrazolin‐5‐one (4‐aminoantipyrine) and 3‐(cinnamyl)‐pentane‐2,4‐dione, forms stable complexes with transition metal ions such as Cu(II), Co(II), Ni(II) and Zn(II). The structural features were derived from elemental analysis, molar conductance measurements, infrared, UV–visible, 1H NMR, 13C NMR, mass and electron paramagnetic resonance spectroscopies. These complexes show high conductance values, supporting their electrolytic nature. Spectroscopic and other analytical data of the complexes suggest square planar geometry. In vitro calf thymus DNA binding studies were performed by employing UV–visible absorption spectroscopy, viscometry and cyclic voltammetry. These techniques indicate that all the metal complexes bind to DNA via intercalation mode. Antimicrobial screening of the synthesized ligand and complexes was conducted against Gram‐positive bacteria, Gram‐negative bacteria and fungi. These complexes exhibit higher antimicrobial activities than the free Schiff base, as investigated using the minimum inhibitory concentration method. Gel electrophoresis reveals that these complexes also promote the cleavage of pUC18 plasmid DNA in the presence of activators. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

19.
Mixed‐ligand palladium(II) complexes of the type [(DT)Pd(PR3)Cl], where DT = diethyldithiocarbamate (1), dibutyldithiocarbamate (2,3), dipropyldithiocarbamate (4,5), bis(2‐methoxyethyl)dithiocarbamate; PR3 = benzyldiphenylphosphine (1,4), diphenyl‐o‐tolylphosphine (2), diphenyl‐t‐butylphosphine (3), P‐chlorodiphenylphosphine (5) and triphenylphosphine (6), have been synthesized and characterized by elemental analyses and FT‐IR, Raman and multinuclear NMR spectroscopy. The structures of compounds 1 and 2 were determined by single‐crystal X‐ray diffraction (XRD) measurements and these analyses showed that the complexes have pseudo square‐planar geometry around the Pd(II) and that the dithiocarbamate ligand is bound in a bidentate fashion, while the remaining two positions are occupied by a tertiary organophosphine and a chloride ligand. The anticancer studies showed that the Pd(II) complexes are highly active against cisplatin‐resistant DU145 human prostate carcinoma (HTB‐81) cells with the highest activity shown by compound 6 (IC50 = 2.12 µm ). The redox behavior and ds‐DNA‐denaturing ability of the complexes were studied by cyclic voltammetry and two reduction and one oxidation waves were observed. The decrease in the reduction peak currents illustrated the consumption of the mixed‐ligand drug by the DNA molecule. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
Macrocyclic complexes of Cu(II), Ni(II), Co(II), and Zn(II)of a tetradentate Schiff base ligand derived from 3-benzalideneacetoacetanilide and N-(2-aminoethyl)-1,3-ropanediamine were synthesized. The nature of the complexes and the geometry have been inferred from their microanalytical data, magnetic susceptibility measurements, IR, UV-Vis, 1H NMR, ESR, and mass spectral techniques. The low electrical conductance of the complexes supports the neutral nature. Monomeric nature of the complexes is assessed from their magnetic susceptibility values.The in vitro biological screening effects of the investigated compounds were tested against the bacteria E. coli, S. aureus, S. typhi, and K. pneumoniae by the well diffusion method using agar nutrient as the medium. A comparative study of minimum inhibitory concentration (MIC) values of the Schiff base and its complexes indicate that the metal complexes exhibit higher antibacterial activity than the free ligand and the control (streptomycin). The cyclic voltammetry method was used to probe the interaction of a Cu(II) complex with pUC18 DNA. Information of the binding ratio and intercalation mode can be obtained from its electrochemical data. Cyclic voltammetric measurements showed that the Cu(II) complex undergoes a reversible reduction at biologically accessible potentials. From the study, it is understood that the copper complex prefers to bind with DNA in Cu(II) rather than Cu(I) oxidation state. The DNA cleavage ability of the complexes was monitored by gel electrophoresis using supercoiled pUC18 DNA in tris-HCl buffer. The text was submitted by the authors in English  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号