首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
王书松  张素英 《计算物理》2021,38(1):113-119
研究谐振子势与高斯势联合势阱中玻色爱因斯坦凝聚体的基态。发现凝聚体形成巨涡旋时,其涡旋个数等于平均角动量,且凝聚体密度分布和角动量密度分布相同,进而得到凝聚体形成巨涡旋时所处基态是角动量的本征态。发现势阱从各向同性的环形势阱逐渐变为各向异性的环形势阱的过程中,凝聚体的平均角动量与涡旋个数之比先由1平缓下降,然后迅速下降,最后保持在0.5附近。同时给出凝聚体密度分布和角动量分布的特征,并作出相应解释。  相似文献   

2.
We study the Coulomb-Fröhlich model on a triangular lattice, looking in particular at states with angular momentum. We examine a simplified model of crab bipolarons with angular momentum by projecting onto the low energy subspace of the Coulomb-Fröhlich model with large phonon frequency. Such a projection is consistent with large long-range electron-phonon coupling and large repulsive Hubbard U. Significant differences are found between the band structure of singlet and triplet states: The triplet state (which has a flat band) is found to be significantly heavier than the singlet state (which has mass similar to the polaron). We test whether the heavier triplet states persist to lower electron-phonon coupling using continuous time quantum Monte Carlo (QMC) simulation. The triplet state is both heavier and larger, demonstrating that the heavier mass is due to quantum interference effects on the motion. We also find that retardation effects reduce the differences between singlet and triplet states, since they reintroduce second order terms in the hopping into the inverse effective mass.  相似文献   

3.
We have calculated the nucleon effective mass in symmetric nuclear matter within the framework of the Brueckner-Bethe-Goldstone (BBG) theory, which has been extended to include both the contributions from the ground-state correlation effect and the three-body force (TBF) rearrangement effect. The effective mass is predicted by including the ground-state correlation effect and the TBF rearrangement effect, and we discuss the momentum dependence and the density dependence of the effective mass. It is shown that the effect of ground state correlations plays an important role at low densities, while the TBF-induced rearrangement effect becomes predominant at high densities.  相似文献   

4.
We show that the ground state energy of the translationally invariant Nelson model, describing a particle coupled to a relativistic field of massless bosons, is an analytic function of the coupling constant and the total momentum. We derive an explicit expression for the ground state energy which is used to determine the effective mass.  相似文献   

5.
Magnetic transverse form factors of 12? and 14? states in 208Pb are calculated in a fully self-consistent manner utilizing the effective density dependent interaction D1. Reduction of the strength due to the RPA polarization and the ground state correlations is observed and found to be independent of the momentum transfer. Nuclear structure implications particular to two close lying 12? states are discussed.  相似文献   

6.
We demonstrate a general method to measure the quantum state of an angular momentum of arbitrary magnitude. The (2F+1)x(2F+1) density matrix is completely determined from a set of Stern-Gerlach measurements with (4F+1) different orientations of the quantization axis. We implement the protocol for laser cooled Cesium atoms in the 6S(1/2)(F = 4) hyperfine ground state and apply it to a variety of test states prepared by optical pumping and Larmor precession. A comparison of input and measured states shows typical reconstruction fidelities F >/~0.95.  相似文献   

7.
Ab-initio, self-consistent electronic energy bands of zinc blende CdS are reported within the local density functional approximation (LDA). Our first principle, non-relativistic and ground state calculations employed a local density potential and the linear combination of atomic orbitals (LCAO). Within the framework of the Bagayoko, Zhao, and Williams (BZW) method, we solved self-consistently both the Kohn-Sham equation and the equation giving the ground state density in terms of the wavefunctions of the occupied states. Our calculated, direct band gap of 2.39 eV, at the Γ point, is in accord with the experiment. Our calculation reproduced the peaks in the conduction and valence bands density of states, within experimental uncertainties. The calculated electron effective mass agrees with experimental findings.  相似文献   

8.
We approach the biexciton Schrödinger equation not through the free-carrier basis as usually done, but through the free-exciton basis, exciton–exciton interactions being treated according to the recently developed composite boson many-body formalism which allows an exact handling of carrier exchange between excitons, as induced by the Pauli exclusion principle. We numerically solve the resulting biexciton Schrödinger equation with the exciton levels restricted to the ground state and we derive the biexciton ground state as well as the bound and unbound excited states as a function of hole-to-electron mass ratio. The biexciton ground-state energy we find, agrees reasonably well with variational results. Next, we use the obtained biexciton wave functions to calculate optical absorption in the presence of a dilute exciton gas in quantum well. We find an asymmetric peak with a characteristic low-energy tail, identified with the biexciton ground state, and a set of Lorentzian-like peaks associated with biexciton unbound states, i.e., exciton–exciton scattering states. Last, we propose a pump–probe experiment to probe the momentum distribution of the exciton condensate.  相似文献   

9.
《Nuclear Physics A》1987,473(3):365-393
Zero and finite temperature contributions of ground state correlations to the nuclear mean field are studied in nuclear matter at normal density. The framework is the nonrelativistic hole line expansion with the Paris potential as the bare NN interaction. For different temperatures we calculate single particle properties including correlation contributions in the self-consistent determination of the single-particle energies. We evaluate the nucleon effective mass and the energy mass. Their temperature dependence is studied and related to that of the level density parameter. We also calculate the momentum distribution of nucleons and discuss its behaviour at large momenta. In the present approach the spectral function and the lifetime of hole state can be obtained directly. We present our first results and analyze them briefly. Finally, we examine the important aspects of the conserving character of the approximations made in the course of this study.  相似文献   

10.
We derive general results for the mass shift of bound states with angular momentum ?1 in a periodic cubic box in two and three spatial dimensions. Our results have applications to lattice simulations of hadronic molecules, halo nuclei, and Feshbach molecules. The sign of the mass shift can be related to the symmetry properties of the state under consideration. We verify our analytical results with explicit numerical calculations. Moreover, we comment on the relations connecting the effective range parameter, the binding momentum of a given state and the asymptotic normalization coefficient of the corresponding wave function. We give explicit expressions for this relation in the shallow binding limit.  相似文献   

11.
《中国物理 B》2021,30(10):106702-106702
We investigate the polaron and molecular states of a fermionic atom with one-dimensional spin–orbit coupling(SOC)coupled to a three-dimensional spinless Fermi sea. Because of the interplay among the SOC, Raman coupling and spinselected interatomic interactions, the polaron state induced by the spin–orbit coupled impurity exhibits quite unique features. We find that the energy dispersion of the polaron generally has a double-minimum structure, which results in a finite center-of-mass(c.m.) momentum in the ground state, different from the zero-momentum polarons where SOC are introduced into the majority atoms. By further tuning the parameters such as the atomic interaction strength, a discontinuous transition between the polarons with different c.m. momenta may occur, signaled by the singular behavior of the quasiparticle residue and effective mass of the polaron. Meanwhile, the molecular state as well as the polaron-to-molecule transition is also strongly affected by the Raman coupling and the effective Zeeman field, which are introduced by the lasers generating SOC on the impurity atom. We also discuss the effects of a more general spin-dependent interaction and mass ratio. These results would be beneficial for the study of impurity physics brought by SOC.  相似文献   

12.
We report the study of Stark effect of polarons in infinite parabolic quantum wells under an electric field, taking into account the effects of interaction with bulk LO-phonons. The electron-phonon interaction and the.effective mass in the plane perpendicular to the growth direction for excited states of free polarons have been calculated as functions of the degree of confinement. The general behavior of the excited states is found to be in agreement with previous works on the ground state. It is shown that in the limit of strong confinement the differences in electron-phonon interaction and effective mass between the ground state and excited states vanish. Although the applied electric field has no effect on the electronphonon interaction or the effective mass of a free polaron system, our numerical results for an AlGaAs parabolic quantum well have demonstrated its significance in determining the coupling of electrons with bulk LO-phonons of bound polaron systems.  相似文献   

13.
We report a theoretical analysis of the half-polarized quantum Hall states observed in a recent experiment. Our numerical results indicate that the ground state energy of the quantum Hall nu = 2 / 3 and nu = 2 / 5 states versus spin polarization has a downward cusp at half the maximal spin polarization. We map the two-component fermion system onto a system of excitons and describe the ground state as a liquid state of excitons with nonzero values of exciton angular momentum.  相似文献   

14.
We have derived a system of equations that describes the evolution of the density matrix of a centrosymmetric molecule interacting with a single nonresonant femtosecond laser pulse. The dynamics of the ground electronic state is expressed in terms of the effective Hamiltonian and the coherences between the ground an excited electronic states are functionals of the ground state density matrix. Using the time-dependent perturbation theory, we have calculated the energy deposited in the molecule as a result of rotational stimulated Raman scattering. The effective absorption coefficient is found to be proportional to the fourth power of the pulse amplitude and has a resonance-like dependence with respect to the pulse duration.  相似文献   

15.
We demonstrate quantum control of a large spin angular momentum associated with the F=3 hyperfine ground state of 133Cs. Time-dependent magnetic fields and a static tensor light shift are used to implement near-optimal controls and map a fiducial state to a broad range of target states, with yields in the range 0.8-0.9. Squeezed states are produced also by an adiabatic scheme that is more robust against errors. Universal control facilitates the encoding and manipulation of qubits and qudits in atomic ground states and may lead to the improvement of some precision measurements.  相似文献   

16.
We construct a set of exact ground states with a localized ferromagnetic domain wall and an extended spiral structure in a quasi-one-dimensional deformed flat-band Hubbard model. In the case of quarter filling, we show the uniqueness of the ground state with a fixed magnetization. The ground states with these structures are degenerate with the all-spin-up and all-spin-down states. This property of the degeneracy is the same as the domain wall solutions in the XXZ Heisenberg–Ising model. We derive a useful recursion relation for the normalization of the domain wall ground state. Using this recursion relation, we discuss the convergence of the ground state expectation values of arbitrary local operators in the infinite-volume limit. In the ground state of the infinite-volume system, the translational symmetry is spontaneously broken by this structure. We prove that the cluster property holds for the domain wall ground state and excited states. We also estimate bounds of the ground state expectation values of several observables, such as one- and two-point functions of spin and electron number density.  相似文献   

17.
We discuss lattice simulations of the ground state of dilute neutron matter at next-to-leading order in chiral effective field theory. In a previous paper the coefficients of the next-to-leading-order lattice action were determined by matching nucleon-nucleon scattering data for momenta up to the pion mass. Here the same lattice action is used to simulate the ground state of up to 12 neutrons in a periodic cube using Monte Carlo simulations. We explore the density range from 2% to 8% of normal nuclear density and analyze the ground-state energy as an expansion about the unitarity limit with corrections due to finite scattering length, effective range, and P -wave interactions.  相似文献   

18.
A Fermi-Bose mapping method is used to determine the exact ground states of several models of mixtures of strongly interacting ultracold gases in tight waveguides, which are generalizations of the Tonks-Girardeau (TG) gas (1D Bose gas with point hard cores) and fermionic Tonks-Girardeau (FTG) gas (1D spin-aligned Fermi gas with infinitely strong zero-range attractions). We detail the case of a Bose-Fermi mixture with TG boson-boson (BB) and boson-fermion (BF) interactions. Exact results are given for density profiles in a harmonic trap, single-particle density matrices, momentum distributions, and density-density correlations. Since the ground state is highly degenerate, we analyze the splitting of the ground manifold for large but finite BB and BF repulsions.  相似文献   

19.
We investigated the electronic structure of 5d transition-metal oxide Sr2IrO4 using angle-resolved photoemission, optical conductivity, x-ray absorption measurements, and first-principles band calculations. The system was found to be well described by novel effective total angular momentum Jeff states, in which the relativistic spin-orbit coupling is fully taken into account under a large crystal field. Despite delocalized Ir 5d states, the Jeff states form such narrow bands that even a small correlation energy leads to the Jeff=1/2 Mott ground state with unique electronic and magnetic behaviors, suggesting a new class of Jeff quantum spin driven correlated-electron phenomena.  相似文献   

20.
Bands based on the 0+ ground state and the first excited 0+ pairing vibrational state of48Ti,52Cr and56Fe are studied with the generator coordinate method. The generating wave functions for each value of the angular momentumJ are angular momentum and particle number projected selfconsistent Hartree-Fock-Bogoliubov states where the constrained amount of pairing correlations serves as the generator coordinate. The interaction is given by reaction matrix elements derived from the Hamada-Johnston force. The basis includes the four lowest oscillator shells. The excitation energies of the pairing vibrational states can be reproduced fairly well by the present choice of the generating wave functions, whereas the ground band is not much improved compared to projected Hartree-Bogoliubov calculations. We find that the strength of the pairing correlations in the 0+ and 2+ states of the ground state and the pairing vibrational bands can be related to data of two-particle transfer reactions. The angular momentum dependence of the pairing correlations and of the moments of inertia are studied. The results show that for a strongly paired ground state the ground state band and the pairing vibrational band intersect. This may produce in the yrast band the anomaly of the moment of inertia known from rare earth nuclei.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号