首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 538 毫秒
1.
The laminar flow through a leaky tube is investigated, and the momentum and conservation of energy equations are solved analytically. By using the Hagen-Poiseuille velocity profile and defining unknown functions for the axial and radial velocity components, the pressure and mass transfer equations are obtained, and their profiles are plotted according to different parameters. The results indicate that the axial velocity, the radial velocity, the mass transfer parameter, and the pressure in the tube decrease as the fluid moves along the tube.  相似文献   

2.
A laser anemometer has been used to study the region of accelerating shear flow near the exit of a vertical tube. It is in this region that the transition between steady laminar shear flow in the upstream tube and elongational flow in the downstream liquid jet takes place.Downstream velocity profiles were measured for solutions of 0.9% polyacrylamide in 85% glycerol/water and 0.9% polyacrylamide in water. Reynolds numbers (based on wall conditions in the fully developed upstream flow) ranged from 45 to 310 and Froude numbers from 0.294 to 4.11. Tubes, having sharpedged and rounded exit corners, with diameters of 1.25 cm and 1.90 cm were usedUpstream velocity profiles were measured for a solution of 0.9% polyacrylamide in water. Reynolds numbers ranged from 16 to 670. Only tubes having sharp-edged exit corners were used.It was found that the transition region did not extend upstream into the tube but was confined to the downstream jet. The transition took place over a distance of about 3–5 tube diameters depending upon the value of the Froude number. The axial distance downstream from the tube exit plane at which the velocity profile first became flat increased with increasing Froude number. The magnitude of the jet velocity at this point decreased with increasing Froude number.The condition of the tube exit corner was found to influence the flow in the transition region. Downstream velocity profiles obtained using tubes having rounded exit corners initially develop more slowly than, but soon catch up with and eventually overtake, the corresponding profiles obtained using tubes with sharp-edged exit corners.Downstream velocity profiles obtained for the 0.9% polyacrylamide in 85% glycerol/water solution were found to develop smoothly. The transition from steady shear flow in the tube to elongational flow in the jet took place through the combined processes of acceleration of the outer layers of the jet due to radial transfer of momentum with adjacent inner layers, the process spreading steadily inwards with increasing axial distance from the tube exit plane, and acceleration of the whole due to gravity. However, the velocity profiles obtained for the 0.9% polyacrylamide in water solution did not always develop so smoothly. At a Reynolds number of 310 and Froude number of 2.06 the radial momentum transfer process was restricted to a narrow outer region of the jet until a downstream axial distance of about 2 tube diameters was reached. Thereafter, the transition to a flat profile took place smoothly.  相似文献   

3.
圆直管内层流振荡流的摩擦特性   总被引:2,自引:0,他引:2  
研究了在谐波压力梯度作用下圆管内层流振荡流的流速分布形态、断面平均流速、驱动功率损耗及摩擦特性,并对管内单方向定常流的范宁摩擦系数公式进行扩展,建立了用于管内振荡流的摩擦系数计算式。摩擦系数理论计算结果与实验显示了较好的一致性。  相似文献   

4.
The roles of luid inertia and shear-rate dependent viscosity in determining the velocity field in an axisymmetric sudden contraction are assessed by finite-element analysis for a generalized Newtonian fluid with viscosity function given by a Carreau equation. Acting alone, either increasing shear-thinning of the viscosity or increasing fluid inertia suppresses the upstream vortex that surrounds the opening to the small tube. For creeping flows, shear thinning does not produce concavities and off-centered maxima in the axial velocity profile just inside the small tube, even at high Carreau numbers where the velocity field approaches the limiting form for a power-law fluid. Peaks in the axial velocity away from the center of the tube were found only for moderate and high Reynolds numbers and were enhanced by shear thinning, which decreased the viscosity and consequently increased the “local” Reynolds number near the wall of the small tube. The effect of steep velocity gradients near this surface on the accuracy of the finite-element approximations is discussed.  相似文献   

5.
Comparative numerical study of laminar heat transfer characteristics of annular tubes with sinusoidal wavy fins has been conducted both experimentally and numerically with Re = 299–1,475. The uniform heat flux is imposed on the tube outside wall surface. Two tube materials (copper and stainless steel) are considered. It is found that the fluid temperature profile is not linear but convex along the flow direction due to the axial heat conduction in tube wall, and the effects of axial heat conduction on the heat transfer decreases with an increase in Reynolds number or decrease in tube wall thermal conductivity. The axial distributions of local Nusselt number could reach periodically fully developed after 3–5 cycles. The convectional data reduction method based on the traditional method should be improved for tube with high thermal conductivity or low Reynolds numbers, Otherwise, the heat transfer performance of internally finned tube may be underestimated.  相似文献   

6.
边界受限下的轴向压缩超弹性圆管的失稳分析   总被引:1,自引:0,他引:1  
橡胶制品广泛应用于社会生产和日常生活。本文主要研究外边界受限的超弹性圆管受轴向压缩时的稳定性问题,在非线性弹性理论框架下推导控制方程,对其进行线性分岔分析。考虑沿轴向对称分布的失稳模态,得到临界模态以及对应的临界主伸长,同时刻画出临界主伸长以及临界应力与壁厚之间的关系。结果表明,圆管壁越薄,发生分岔时的临界主伸长更小,更不容易发生失稳。此外,结合封隔器的密封原理,推导出封隔器圆筒在进行油液密封时轴向应力与接触应力的表达式,修正了此前的推导结果,为封隔器在密封性能的判断上提供理论依据。  相似文献   

7.
It is shown that the thrust, T, exerted by a jet on the tube from which it flows, and the corresponding die-swell ratio, D, are closely related and dependent on the axial velocity and stress profiles at the exit plane. Velocity-profile data, calculated by Tanner using a finite element method, have been used to demonstrate that for a Newtonian liquid the reduction in measured thrust from the expected value arises from a re-arranged, non-parabolic axial velocity profile and the related re-arranged non-zero axial stress profile at the exit plane. The axial stress re-arrangement is the major effect.Using the correction-curve thus derived to determine the normal stresses, ν1 + 12ν2 aqueous and non-aqueous polymer solutions gives values that are higher than the “correct” results by a significant, substantial amount. The difference is not due to neglect of the second normal stress difference, ν2, nor to the neglect of the wall pressure at the exit plane, which is shown experimentally to be very small. It is suggested that the difference, which is a function only of the shear stress (or rate of shear) at the wall, may arise from a difference in the stress profile associated with the velocity re-arrangement at the exit between Newtonian liquids and elasticoviscous liquids for which the extensional viscosity may be high.  相似文献   

8.
In the present study, the flow structure such as the velocity profile and the wall shear stress in an asymmetrical arterial branch in laminar steady flow has been experimentally studied. In the branch model, the daughter tube asymmetrically bifurcates from the parent tube at 45°. The axial and the transverse velocity components have been measured by two-dimensional laser Doppler velocimetry, and the wall shear stress is measured by the electrochemical method. Furthermore, the wall shear stress estimated from the velocity profile is compared with that measured by the electrochemical method. Consequently, it has been clarified that, as it approaches the entrance of the daughter tube, the core flow deflects into the daughter tube, and the variation of wall shear stress along the proximal wall results from the secondary motion which is transferred from the parent tube to the daughter tube.  相似文献   

9.
An experimental study was conducted to investigate fluid temperature fields inside a flat-plate solar collector tube. The results show the highest fluid temperature at the upper end of the tube which decreased gradually to the lowest value at the bottom end of the tube, whereas, the temperature field in the horizontal plane is symmetric about the centerline. The vertical temperature gradients vary with the axial distance. The local fluid temperature increased nonlinearly along the collector length and its magnitude decreased with an increase in the Reynolds number. The local Rayleigh number increased with the axial distance and at a given location, its magnitude increased with a decrease in the Reynolds number, whereas, the local Nusselt number trends in flat-plate collector tube are in general similar to that in the conventional laminar channel flows. The local fluid temperature increased with an increase in the incident heat flux at a given collector orientation but decreased for the inclined collectors. The results show that over the given Reynolds number range, the fluid in a flat-plate collector tube is stably stratified over most of the fluid cross-sectional domain and the convective currents are suppressed and restricted to a thin layer adjacent to the lower tube wall. The results from the present study provide the physical explanation for the heat transfer enhancement by insert devices. That is, the insert devices disrupt the stably stratified layer and induce mixing which enhances the heat transfer.  相似文献   

10.
The influence of free convection on forced convection heat transfer becomes important in laminar flows. Numerical methods have been applied for a study of mixed convection in vertical tubes for the following conditions: temperature-dependent fluid density, constant wall temperature and parabolic profile of axial velocity at the tube entrance. Both cases: heating and cooling have been considered.  相似文献   

11.
This paper examines the combination of radial deformation with torsion for a circular cylindrical tube composed of a transversely isotropic hyperelastic material subject to finite deformation swelling. The stored energy function involves separate matrix and fiber contributions such that the fiber contribution is minimized when the fiber direction is at a natural length. This natural length is not affected by the swelling. Hence swelling preferentially expands directions that are orthogonal to the fiber. The swelling itself is described via a swelling field that prescribes the local free volume at each location in the body. Such a treatment is a relatively simple generalization of the conventional incompressible theory. The direction of transverse isotropy associated with the fiber reinforcement is described by a helical winding about the tube axis. The swelling induced preferential expansion orthogonal to this direction induces the torsional aspect of the deformation. For a specific class of strain energy functions we find that the twist increases with swelling and approaches a limiting asymptotic value as the swelling becomes large. The fibers reorient such that fibers at the inner portion of the tube assume a more circumferential orientation whereas, at least for small and moderate swelling, the fibers in the outer portion of the tube assume a more axial orientation. For large swelling the fibers in the outer portion of the tube reorient beyond the axial orientation, and so are described by helices with orientation in the opposite sense to that in the reference configuration.   相似文献   

12.
We study a contact problem with friction for a hyperelastic long thin-walled tube. One end of the tube is placed over an immovable, rough, rigid cylinder and an axial force is applied to another end. We assume the deformation of the tube is finite and axisymmetric. The tube is modeled by a semi-infinity cylindrical membrane. The axial force tends to a constant value at large distances from the inclusion. The membrane is made of an incompressible, homogeneous, isotropic elastic material. A contact between the membrane and the rigid cylinder is with a dry friction. The membrane will not slide off the cylinder only by friction and at a sufficient contact area. The friction is described by Coulomb’s law. We study a minimum length of the membrane which is in contact with the rigid cylinder and is needed to hold the membrane on the rigid cylinder. We obtain an explicit solution for the Bartenev–Khazanovich (Varga) strain–energy function and numerical results for the Mooney–Rivlin and Fung models.  相似文献   

13.
It is shown that an existing form of jet-thrust device may be modified for satisfactory use at elevated temperatures. Jets are produced from a straight capillary tube and from three nozzles designed to provide different rates of uniaxial extension in the flowing oil, with shear present near the nozzle walls.The behaviour of three simulated multigrade motor oils with additives of different chemical type is compared with that of Newtonian oils at temperature of 84°C. In straight-tube flow, no measurable normal stress is detected in one of the oils (that with an alkylmethacrylate as polymer additive), but the other two oils give stresses which are measurable and, in one case, as high as those obtained at ambient temperature (that with the styrene-butadiene copolymer additive). For these oils the normal stresses measured in tubes are much closer to the axial stresses measured in nozzles than was the case at ambient temperature.In nozzle flow, axial stresses are detected in each oil which are rather lower than those measured at ambient temperature, the deviation increasing with increased jet velocity. The relative importance of axial stress, compared with shear stress, is shown to increase with increasing temperature and shear rate. The ration of axial stress to shear may reach a value of 3 or 4 at a shear rate of 105set?1, the oils with styrene-butadiene and styrene-isoprene copolymer additives being somewhat better performers than that with the alkylmethacrylate copolymer additive.It is suggested that the presence of normal, or axial, stresses might improve lubrication performance in those situations where normal load is applied with little relative movement of the bearing surfaces.  相似文献   

14.
We consider the problem of bulging, or necking, of an infinite thin-walled hyperelastic tube that is inflated by an internal pressure, with the axial stretch at infinity maintained at unity. We present a simple procedure that can be used to derive the bifurcation condition and to determine the near-critical behaviour analytically. It is shown that there is a bifurcation with zero mode number and that the associated axial variation of near-critical bifurcated configurations is governed by a first-order differential equation that admits a locally bulging or necking solution. This result suggests that the corresponding bifurcation pressure can be identified with the so-called initiation pressure which featured in recent experimental studies. This is supported by good agreement between our theoretical predictions and one set of experimental data. It is also shown that the Gent material model can support both bulging and necking solutions whereas the Varga and Ogden material models can only support bulging solutions. Relevance of the present method to the study of non-linear wave propagation in a fluid-filled distensible tube is also discussed.  相似文献   

15.
Measurements have been made of the distributions of the mean-velocity and the axial turbulence velocity component in a cross-section of a circular tube at various distances downstream from a number of different constrictions. Also spectral distributions of the turbulence velocity have been measured in the axis of the tube and in a point very close to the wall. The constrictions had a contraction ratio of 0.25 except one which had a ratio of 0.5. One of the constrictions was made of a thin rubber hose. When for this constriction the contraction ratio was reduced to a value smaller than 0.25, self-excited vibrations of the hose took place, producing an oscillating flow of the air in the tube. The Reynoldsnumber was kept at roughly 5,000. As could be expected, after 40 tube diameter distance downstream from the constrictions an almost complete recovery of the disturbed turbulent flow, as far as the distributions of the mean velocity and relative turbulence intensity are concerned, was obtained. Depending on the shape of the constriction even a shorter distance appeared to be sufficient. The flexible constriction then was in the non-vibrating condition. However, the spectral distributions showed in some cases still a difference with the undisturbed case, in particular in the low frequency range. If the flexible constriction was vibrating, the induced oscillations of the flow which showed up as discrete peaks in the spectral distributions, persisted over the entire length of the tube, again as expected.  相似文献   

16.
The asymptotic behaviour of laminar forced convection for Bingham fluid in a circular tube subjected to an axially varying wall heat flux is studied analytically. The effect of viscous dissipation is taken into account while the axial heat conduction in the fluid is considered as negligible. The asymptotic temperature profile and the asymptotic Nusselt number are determined for various axial wall heat flux distributions which yield a thermally developed region. The results obtained show a diminution in asymptotic Nusselt number when the Brinkman number and the dimensionless radius of the plug flow region increase. Comparisons with the results in the literature for Newtonian fluids show the validity of the present analysis. To cite this article: R. Khatyr et al., C. R. Mecanique 330 (2002) 69–75.  相似文献   

17.
Viscous flow in a circular cylindrical tube containing an infinite line of viscous liquid drops equally spaced along the tube axis is considered under the assumption that a surface tension, sufficiently large, holds the drops in a nearly spherical shape. Three cases are considered: (1) axial translation of the drops, (2) flow of the external fluid past a line of stationary drops, and (3) flow of external fluid and liquid drops under an imposed pressure gradient. Both fluids are taken to be Newtonian and incompressible, and the linearized equations of creeping flow are used.The results show that both drag and pressure drop per sphere increase as the spacing increases at fixed radius and also increase as the radius of the drop increases. The presence of the internal motion reduces the drag and pressure gradients in all cases compared to rigid spheres, particularly for drops approaching the size of the tube.  相似文献   

18.
In this paper, Poiseuille flow of a polar fluid (model of a red blood cell suspension) under various boundary conditions at the wall, viz., slip or no-slip in the axial velocity and couple stresses zero or non-zero at the boundary, is considered from the point of view of its applications to blood flow. Analytic expressions for axial and rotational velocities, flow rate, effective viscosity and stresses are obtained. The magnitudes of the length ratioL and the coupling number N are determined in accordance with concentration and tube radius (in the existing literature, values ofL andN are chosen arbitrarily). Velocity profiles (both axial and rotational) and the variation of the effective viscosity with concentration, tube radius and for various values of the boundary condition parameters are shown graphically. The analytic results obtained are compared with experimental results (for blood flow). It is found that they are in a reasonably good agreement. The effective viscosity exhibits the Inverse Fahraeus-Lindquist Effect in all the cases (including the slip or no-slip in the velocity fields). A method is given for determining the non-zero couple stress boundary condition for a given concentration. Applications of this theory to blood flow are briefly discussed.  相似文献   

19.
20.
The present theoretical assessment deals with the peristaltic-ciliary transport of a developing embryo within a fallopian tubal fluid in the human fallopian tube. A mathematical model of peristalsis-cilia induced flow of a linearly viscous fluid within a fallopian tubal fluid in a finite two-dimensional narrow tube is developed. The lubrication approximation theory is used to solve the resulting partial differential equation. The expressions for axial and radial velocities, pressure gradient, stream function, volume flow rate, and time mean volume flow rate are derived. Numerical integration is performed for the appropriate residue time over the wavelength and the pressure difference over the wavelength. Moreover, the plots of axial velocity, the appropriate residue time over wavelength, the vector, the pressure difference over wavelength, and the streamlines are displayed and discussed for emerging parameters and constants. Salient features of the pumping characteristics and the trapping phenomenon are discussed in detail. Furthermore, a comparison between the peristaltic flow and the peristaltic-ciliary flow is made as the special case. Relevance of the current results to the transport of a developing embryo within a fallopian tubal fluid from ampulla to the intramural in the fallopian tube is also explored. It reveals the fact that cilia along with peristalsis helps to complete the required mitotic divisions while transporting the developing embryo within a fallopian tubal fluid in the human fallopian tube.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号