首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The superconducting phase transition in Nb/Cu0.41Ni0.59/Nb trilayers, with superconducting (S) Nb and ferromagnetic (F) Cu0.41Ni0.59, has been experimentally studied as a function of the F-layer thickness by measuring the temperature dependence of the electrical resistance R(T). It is shown that the shape and the width of the R(T) curves depends on the Cu0.41Ni0.59 thickness, in particular in the regime where π is the coupling between the S layers, which can be expected. To explain the data, we developed a qualitative model which makes the interconnection between the superconducting phase transition and the 0 to π transition in SFS structures are more evident. The text was submitted by the authors in English.  相似文献   

2.
The effect of the exchange energy variation in weakly ferromagnetic alloys on the superconducting resistive transition of superconductor/ferromagnet/superconductor (S/F/S) trilayers is studied. Critical temperature, T c , and resistive transitions versus the F-layer thickness, d F , have been analyzed in Nb/Cu0.41Ni0.59/Nb and Nb/Pd0.81Ni0.19/Nb trilayers. We show that T c (d F ) dependence is sensitive to magnetic inhomogeneities in the F-layer for values of d F corresponding to thickness range where the π-superconducting state is established.  相似文献   

3.
测量了块体金属玻璃Zr46.75Ti8.25Cu7.5Ni10Be27.5在退火前后其电阻值随温度的变化,测量的温度范围为1.5—300K.样品在退火前后都发现有超导现象.零磁场下其超导转变温度Tc分别为1.84和3.76K.在5—300K温度范围内,原始样品具有负的电阻温度系数.如果取Zr, Ti, Cu, Ni及Be分别贡献出1.5, 1.5, 0.5, 0.5及两个传导 关键词: 块体金属玻璃 超导 电阻温度系数  相似文献   

4.
The proximity effect and competition between the BCS and LOFF states are studied in the Cooper limit for thin F/S and F/S/F nanostructures, where F is a ferromagnet and S is a superconductor. The dependences of the critical temperature on the exchange field I, electron correlations λ f, and the thickness d f of the F layer are derived for F/S bilayers and F/S/F trilayers. In addition, two new π-phase superconducting states with electron-electron repulsion in the F layers of F/S/F trilayers are predicted. A two-dimensional LOFF state in F/S/F trilayers is possible only in the presence of a weak magnetic field and the appropriate parameters of the F and S layers. The absence of the suppression of three-dimensional superconductivity in short-period Gd/La superlattices is explained and the electron-electron coupling constant in gadolinium is predicted. A method of superconducting sounding spectroscopy based on the proximity effect is proposed for determining the symmetry of the order parameter, the magnitude and sign of electron correlations, and the exchange field in various nanomagnets F.  相似文献   

5.
Solving the boundary value problem for the Eilenberger function, the superconducting and magnetic states of asymmetric ferromagnet–superconductor–ferromagnet (F1SF2) nanostructures are investigated. The dependences of critical temperature on an exchange field of the F metal, electronic correlations in the S and F metals, and thicknesses of layers F and S are derived. It is shown that the possibility of the Larkin–Ovchinnikov–Fulde–Ferrell (LOFF) state observation is especially increased in the asymmetrical trilayers F1SF2 for which solitary re-entrant superconductivity is predicted. The possibility of solitary re-entrant superconductivity for asymmetrical trilayers F1SF2 in the dirty limit is also shown.  相似文献   

6.
We present experimental evidences for magnetization modification by superconductivity in a series of Nb/Ni80Fe20/Nb trilayers. By monitoring the magnetization in a zero field as a function of temperature, we observed an irreversibility in magnetization between the cooling and warming branches just above the superconducting transition temperature Tc. These results suggest that the magnetization of the ferromagnetic Ni80Fe20 layer is reduced by the mutual interactions between the ferromagnet and superconductor. Moreover, this effect diminishes with increasing thickness of the Ni80Fe20 layer, which indicates that the interaction between the superconducting and magnetic layers occurs mainly at the vicinity of the interfaces.  相似文献   

7.
在1064 nm波长脉冲激光(脉宽25 ps)的照射下,钙钛矿氧化物薄膜La0.67Ca0.33MnO3/SrTiO3具有超快光电效应,对激光脉冲显示ps量级的响应时间,上升沿响应时间300 ps,半高宽700 ps,同时,对激光能量的响应灵敏度为500 mV/mJ。  相似文献   

8.
Hillier  A. D.  Preston  J. M.  Stewart  J. R.  Cywinski  R. 《Hyperfine Interactions》2001,136(3-8):313-319
Zero field μSR has been used to probe rare earth spin dynamics in the magnetic superconductors, Y1−x Er x Ni2B2C. The muon spin relaxation function is stretched exponential, exp (−(λt)β), in form, as usually found for spin glass systems above the glass temperature. However, the Y1−x Er x Ni2B2C compounds show no evidence of coexisting superconducting and static spin glass ground states even at concentrations below the critical value (x=0.6) for long range antiferromagnetic order. The temperature dependence of both the muon spin relaxation rate λ and the exponent β suggests that Er spin dynamics change significantly at the superconducting transition temperature. This revised version was published online in September 2006 with corrections to the Cover Date.  相似文献   

9.
Oscillating behavior of superconductivity in ultrathin bilayers of niobium and ferromagnetic alloy Cu41Ni59 has been observed. This phenomenon was most pronounced at a Nb layer thickness of about 7.3 nm: the superconducting transition temperature T c first sharply decreased with an increase in the ferromagnetic alloy thickness to complete suppression of superconductivity at the ferromagnetic alloy thickness d CuNi ≈ 4 nm. With a further increase in the thickness d CuNi, the superconductivity was restored at d CuNi ≥ 13 nm. This strongly nonmonotonic and reentrant behavior of superconductivity in Nb/Cu41Ni59 bilayers is attributed to implementation of a state in the ferromagnetic alloy that is similar to the quasi-one-dimensional Fulde-Ferrell-Larkin-Ovchinnikov state.  相似文献   

10.
We consider a microscopic theory of F/S/F trilayers with metallic or insulating ferromagnets. The trilayer with metallic ferromagnets is controlled by the formation of non local pair correlations among the two ferromagnets which do not exist with insulating ferromagnets. The difference between the insulating and ferromagnetic models can be understood from lowest order diagrams. Metallic ferromagnets are controlled by non local pair correlations and the superconducting gap is larger if the ferromagnetic electrodes have a parallel spin orientation. Insulating ferromagnets are controlled by pair breaking and the superconducting gap is smaller if the ferromagnetic electrodes have a parallel spin orientation. The same behavior is found in the presence of disorder in the microscopic phase variables and also in the presence of a partial spin polarization of the ferromagnets. The different behaviors of the metallic and insulating trilayers may be probed in experiments. Received 4 July 2001 and Received in final form 8 November 2001  相似文献   

11.
We present a review of photoexcited quasiparticle dynamics of cuprate and pnictide high‐temperature superconductors in regimes (temperature, doping) where different phases such as superconductivity, spin‐density‐wave (SDW) and pseudogap phases coexist or compete with one another. We start with the overdoped cuprate superconductor Y1–xCax Ba2Cu3O7–δ, where the superconducting gap and pseudogap coexist in the superconducting state. In another cuprate Tl2Ba2Ca2Cu3Oy, we ob‐ serve a competition between SDW and superconducting orders deep in the superconducting state. Finally, in the underdoped iron pnictide superconductor (Ba,K)Fe2As2, SDW order forms at 85 K, followed by superconductivity at 28 K. We also find the emergence of a normal‐state order that suppresses SDW at a temperature T * ~ 60 K and argue that this normal‐state order is a precursor to superconductivity. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
The aim of this paper is to explain the non monotonic temperature dependence of the self-consistent superconducting gap of ferromagnet/superconductor/ferromagnet (F/S/F) trilayers with weak ferromagnets in the parallel alignment (equivalent to F/S bilayers). We show that this is due to Andreev bound states that compete with the formation of a minigap. Using a recursive algorithm we discuss in detail the roles of various parameters (thicknesses of the superconductor and ferromagnets, relative spin orientation of the ferromagnets, exchange field, temperature, disorder, interface transparencies).Received: 23 January 2004, Published online: 29 June 2004PACS: 74.78.Na Mesoscopic and nanoscale systems - 74.45. + c Proximity effects; Andreev effect; SN and SNS junctions - 74.50. + r Tunneling phenomena; point contacts, weak links, Josephson effects  相似文献   

13.
In a ferromagnet (F) being in contact with a superconductor (S) an unconventional finite-momentum pairing of electrons forming Cooper pairs occurs. As a consequence, interference effects of the pairing wave function, leading to an oscillation of the critical temperature for increasing F-layer thickness in S/F bilayers, including extinction and recovery of the superconducting state, were predicted by theory. We observed experimentally all types of this behavior, calculated theoretically, in Nb/Cu1 ? x Ni x bilayers (x = 0.59) of nanometer film thickness, prepared by magnetron sputtering (utilizing a moving magnetron deposition technique to provide a superb homogeneity of the ultrathin Nb layers), including a double extinction of superconductivity, giving evidence for a multiple reentrant state.  相似文献   

14.
Ferroelectrics and high temperature superconductors are two promising materials for future electronic devices. Both being perovskite ceramic structures with similar crystal chemistry a set of samples were prepared from the composite of (1−x)YBa2Cu307−δ −(x)BaTiO3 (YBCO/BT). These samples were investigated with temperature dependent resistance, FTIR, X-ray diffraction and SEM-EDX analysis. It has been found that the critical exponent in the T c0 (R = 0) region is in agreement with the percolation theory. A long-range superconducting order results from thermally assisted percolation process through weak-links between the grains. The connectivity in the coherent transition region can be explained by a power law.   相似文献   

15.
63Cu-NMR measurements have been performed on two-leg hole-doped spin ladders Sr14-xCaxCu24O41 single crystals 0 ? x ? 12 at several pressures up to the pressure domain where the stabilization of a superconducting ground state can be achieved. The data reveal a marked decrease of the spin gap derived from Knight shift measurements upon Ca substitution and also under pressure and confirm the onset of low lying spin excitations around P c as previously reported. The spin gap in Sr 2 Ca 12 Cu 24 O 41 is strongly reduced above 20 kbar. However, the data of an experiment performed at P = 36 kbar where superconductivity has been detected at 6.7 K by an inductive technique have shown that a significant amount of spin excitations remains gapped at 80 K when superconductivity sets in. The standard relaxation model with two and three-magnon modes explains fairly well the activated relaxation data in the intermediate temperature regime corresponding to gapped spin excitations using the spin gap data derived from Knight shift experiments. The data of Gaussian relaxation rates of heavily doped samples support the limitation of the coherence length at low temperature by the average distance between doped holes. We discuss the interplay between superconductivity and the spin gap and suggest that these new results support the exciting prospect of superconductivity induced by the interladder tunneling of preformed pairs as long as the pressure remains lower than the pressure corresponding to the maximum of the superconducting critical temperature. Received 8 March 2001 and Received in final form 27 July 2001  相似文献   

16.
We investigate the spin Hall magnetoresistance (SMR) in niobium (Nb) attached to Y3Fe5O12 near the superconducting critical temperature (Tc) of Nb. The SMR vanishes after cooling the sample below Tc, and recovers if the temperature is raised. When a magnetic field larger than the critical field of Nb is applied, the SMR re‐emerges with an enhanced magnitude even if the temperature is below Tc. The experimental results demonstrate that the SMR could be completely suppressed by the coupling between superconducting condensation and spin–orbit interaction in superconductors. In addition to the fundamental physics on the charge–spin interactions in superconductors, our work adds a different dimension to superconducting spintronics. (© 2015 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

17.
李正才  陆伟  董晓莉  周放  赵忠贤 《中国物理 B》2010,19(8):86101-086101
<正>Single crystals of undoped and nickel-doped BaFe_(2-x)Ni_xAs_2(x=0,0.04) have been grown by FeAs self-flux method.The maximum dimension of the crystal is as large as ~ 1 cm along the ab plane.The crystalline topography of a cleaved crystal surface is examined by scanning electron microscope(SEM).By x-ray powder diffraction(XRD) experiments using pure silicon as an internal standard,precise unit cell parameters(tetragonal at room temperature) are determined:a = 3.9606(4) A(1 A=0.1 nm),c = 13.015(2) A for BaFe_(1.96)Ni_(0.04)As_2 and a = 3.9590(5) A,c = 13.024(1) A for BaFe_2As_2.DC magnetization and transport measurements are performed to check superconducting transition(T_c=15 K for x=0.04) and other subtle anomalies.For BaFe_(0.96)Ni_(0.04)As_2 crystal,the resistance curve at normal state shows two distinct anomalies associated with spin and structure transitions,and its magnetization data above ~ 91 K exhibit a linear temperature dependence due to spin density wave(SDW) instability.  相似文献   

18.
We study the critical temperature T c of FSF trilayers (F is a ferromagnet, S is a singlet superconductor), where the triplet superconducting component is generated at noncollinear magnetizations of the F layers. An exact numerical method is employed to calculate T c as a function of the trilayer parameters, in particular, mutual orientation of magnetizations. Analytically, we consider limiting cases. Our results determine the conditions necessary for the existence of recently investigated odd triplet superconductivity in SF multilayers.  相似文献   

19.
Superconductor-ferromagnet (S/F) spin valve effect theories based on the S/F proximity phenomenon assume that the superconducting transition temperature Tc of F1/F2/S or F1/S/F2 trilayers for parallel magnetizations of the F1 and F2 layers (T(c)(P)) are smaller than for the antiparallel orientations (T(c)(AP)). Here, we report for CoOx/Fe1/Cu/Fe2/In multilayers with varying Fe2-layer thickness the sign-changing oscillating behavior of the spin valve effect ΔT(c) = T(c)(AP) - T(c)(P). We observe the full direct effect with T(c)(AP) > T(c)(P) for Fe2-layer thickness d(Fe2) < 1 nm and the full inverse (T(c)(AP) < T(c((P)) effect for d(Fe2) ≥ 1 nm. Interference of Cooper pair wave functions reflected from both surfaces of the Fe2 layer appear as the most probable reason for the observed behavior of ΔT(c).  相似文献   

20.
本文报道,通过对Y1-xCaxBa2Cu3-xMxO7-δ(M=Fe,Ni)体系样品的晶体结构、氧含量、正常态电阻率与温度的关系,以及超导转变温度等测量,并与YBa2Cu3-xMxO7-δ(M=Fe,Ni)体系进行比较,发现Y1-xCaxBa2Cu3-xFexO7-δ体系的Tc显著地高于相应x值的YBa2Cu3-xFexO7-δ体系,而Y1-xCaxBa2Cu3-xNixO7-δ体系则相反,Tc低于仅Ni替代的体系,表明Ca和Fe同时替代时两者引起的载流子浓度(nH)变化相互补偿,抑制了仅Fe替代时引起的nH和Tc急剧下降;而作Ca和Ni同时替代时主要的不是两者引起载流子浓度变化的相互补偿,Ca和Ni替代效应之间的关联较弱。作者认为,对Y1-xCaxBa2Cu3-xFexO7-δ体系属于CuO2平面外的元素替代,这时载流子浓度是决定Tc的主要因素;而对Y1-xCaxBa2Cu3-xNixO7-δ体系,由于Ni2+离子主要占据Cu(Ⅱ)位,它导致磁拆对效应,Ni2+离子的拆对效应是引起Tc下降的直接原因。 关键词:  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号