首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A laser anemometer has been used to study the region of accelerating shear flow near the exit of a vertical tube. It is in this region that the transition between steady laminar shear flow in the upstream tube and elongational flow in the downstream liquid jet takes place.Downstream velocity profiles were measured for solutions of 0.9% polyacrylamide in 85% glycerol/water and 0.9% polyacrylamide in water. Reynolds numbers (based on wall conditions in the fully developed upstream flow) ranged from 45 to 310 and Froude numbers from 0.294 to 4.11. Tubes, having sharpedged and rounded exit corners, with diameters of 1.25 cm and 1.90 cm were usedUpstream velocity profiles were measured for a solution of 0.9% polyacrylamide in water. Reynolds numbers ranged from 16 to 670. Only tubes having sharp-edged exit corners were used.It was found that the transition region did not extend upstream into the tube but was confined to the downstream jet. The transition took place over a distance of about 3–5 tube diameters depending upon the value of the Froude number. The axial distance downstream from the tube exit plane at which the velocity profile first became flat increased with increasing Froude number. The magnitude of the jet velocity at this point decreased with increasing Froude number.The condition of the tube exit corner was found to influence the flow in the transition region. Downstream velocity profiles obtained using tubes having rounded exit corners initially develop more slowly than, but soon catch up with and eventually overtake, the corresponding profiles obtained using tubes with sharp-edged exit corners.Downstream velocity profiles obtained for the 0.9% polyacrylamide in 85% glycerol/water solution were found to develop smoothly. The transition from steady shear flow in the tube to elongational flow in the jet took place through the combined processes of acceleration of the outer layers of the jet due to radial transfer of momentum with adjacent inner layers, the process spreading steadily inwards with increasing axial distance from the tube exit plane, and acceleration of the whole due to gravity. However, the velocity profiles obtained for the 0.9% polyacrylamide in water solution did not always develop so smoothly. At a Reynolds number of 310 and Froude number of 2.06 the radial momentum transfer process was restricted to a narrow outer region of the jet until a downstream axial distance of about 2 tube diameters was reached. Thereafter, the transition to a flat profile took place smoothly.  相似文献   

2.
Velocity profiles and static pressures were measured in a tube into which air was injected uniformly through the porous wall. The tube was closed at its upstream end and the flow through it was caused by the injection only. The results of the measurements were compared with a numerical evaluation of the theory for laminar fully-developed flow with injection which has been reported in the literature. It was found that the flow was fully-developed beyond a length of 5 tube diameters measured from the beginning of the porous section. In the developed laminar flow regime, the measurements agree well with the results of the analysis. Transition to turbulence was found to occur at an injection Reynolds number of ?70 and a main stream Reynolds number of 10,000. The turbulent velocity profiles agreed with those measured by R. M.Olson.  相似文献   

3.
The paper investigates heat transfer in annular laminar undisturbed flow of two immiscible liquids, with constant heat-flux generated at the wall of the tube. It presents an analytical solution for the fully developed temperature field. This is used to obtain a more general solution from a model, describing the temperature field as a superposition of the fully developed and the developing fields. This superposition model is solved by an orthogonal collocation method. An asymptotic model for short entry lengths is also described. Calculations for a kerosene-water system, show that the superposition solution converges to the entrance solution below 100 diameters and converges asymptotically to the solution of the fully developed temperature field beyond 5000 diameters. The effect of the wavy interface is assessed experimentally for annular kerosene-water flow, by comparing predicted and measured temperature profiles. It is found that experimental profiles are considerably flatter and measured Nusselt numbers for the kerosene phase are accordingly higher by 40–320% as compared to the undisturbed flow analyses.  相似文献   

4.
Summary A numerical method is used to solve the heat transfer equations for laminar flow in ducts of rectangular cross section with simultaneously developing temperature and velocity profiles, both for constant wall temperature and for constant heat input per unit length of the duct. Like the solutions for a fully developed velocity profile, the Nusselt number for each aspect ratio is found to increase from a limiting value at large distances from the entry plane to a maximum at the entry plane. The results also show a strong effect of the Prandtl number on the heat transfer coefficients with uniform and fully developed velocity profiles representing the upper and lower limits respectively. Comparisons are made with analytical solutions for circular ducts and parallel plates and with experimental data.  相似文献   

5.
New experimental data are presented and discussed for fully developed pipe flow of shear-thinning, viscoelastic polymer solutions in the transitional regime between laminar and turbulent flow. The data confirm that such transitional flows exhibit significant departures from axisymmetry in contrast to the fully developed pipe flow of Newtonian fluids or both laminar and turbulent flows of such drag-reducing liquids. The azimuthal structure of the asymmetry is investigated together with its axial development and also the velocity fluctuation levels. These data do not lead to an explanation for the asymmetry but do suggest that the influence of the flow geometry both upstream and downstream can be ruled out.  相似文献   

6.
 The flow of isotropic and liquid crystalline (LC) hydroxypropylcellulose (HPC) aqueous solutions into an abrupt axisymmetric contraction has been quantitatively measured by pulsed-field-gradient NMR techniques. Steady-state axial velocity profiles, acquired upstream of the contraction, reveal a large contraction entry length for the LC solution. This entry flow field exists over an order of magnitude change in flow rate and is attributed to elasticity that is associated with polydomain liquid crystallinity. Pronounced, off-centerline velocity maxima (in an axisymmetric flow field) were present upstream of the contraction, in the entry flow region. Apparently, a more viscous and elastic core of fluid was present along the centerline; this fluid resisted elongational strain more than the fluid closer to the walls. Quantitative velocity profiles were extracted from displacement distributions and corrected for elongational dispersion. The isotropic solution velocity profiles matched those obtained from viscoelastic simulations using an approximate Doi-Edwards model, parameterized with independent rheological data. Received: 29 April 1999/Accepted: 30 August 1999  相似文献   

7.
Using a three-dimensional (3-D) particle-tracking velocimeter, detailed turbulent flow measurements were made in a plane channel with a one-sided 50% abrupt expansion, which acted as a backward-facing step. The turbulent channel flow reached a fully developed state well upstream of the step. The Reynolds number based on the upstream centerline velocity and the step height H was 5540. With the mean reattachment point located at 6.51H downstream of the step, the measurement region ranged from −2H upstream to 12H downstream of the step. Various turbulent statistics and the energy budget were calculated from numerous instantaneous vector distributions. As in previous experimental investigations, the Reynolds normal and shear stresses had maximum values upstream of the reattachment. The stress anisotropy tensor revealed a peculiar phenomenon near the reattachment wall, wherein the spanwise normal stress was the largest among the three normal stresses. The triple velocity correlations indicated large values in the separating shear layer, and hence the turbulent diffusion was a major term in the energy budget. Comparison was made between the present results and those of the direct numerical simulation (DNS) of Le et al. (1993), and it was found that the mean and fluctuating velocities, the Reynolds shear stress, and the turbulent energy budget were in excellent agreement, although there was a considerable difference in the inflow conditions.  相似文献   

8.
The results of an experimental investigation into the behavior of unconfined, steady, fully turbulent, two-phase jets are described. A round jet of 25.4 mm in diameter, exit velocity of 20 m/s and containing 80 m beads with a mass density of loading of 1.5% was examined. Mean velocity profiles at several stations, as well as the rms values and velocity cross-correlations for both phases were measured by laser-Doppler velocimetry. It was found that the particles lagged the fluid by 8% near the exit, but later, at 9 jet diameters downstream led it by about 7%. Also, the velocity profiles of the particles were flatter than those of the fluid.  相似文献   

9.
Newtonian fluid flow in two- and three-dimensional cavities with a moving wall has been studied extensively in a number of previous works. However, relatively a fewer number of studies have considered the motion of non-Newtonian fluids such as shear thinning and shear thickening power law fluids. In this paper, we have simulated the three-dimensional, non-Newtonian flow of a power law fluid in a cubic cavity driven by shear from the top wall. We have used an in-house developed fractional step code, implemented on a Graphics Processor Unit. Three Reynolds numbers have been studied with power law index set to 0.5, 1.0 and 1.5. The flow patterns, viscosity distributions and velocity profiles are presented for Reynolds numbers of 100, 400 and 1000. All three Reynolds numbers are found to yield steady state flows. Tabulated values of velocity are given for the nine cases studied, including the Newtonian cases.  相似文献   

10.
Measurements of flow disturbances in the downstream region of modeled stenoses in a rigid tube, with upstream pulsatile flow are reported. Experiments were conducted over physiologically relevant mean Reynolds numbers of 600; based on the tube diameter and the time-averaged value of upstream centerline velocity. Contoured constrictions with 25%, 50% and 75% area reductions were investigated and velocity data were obtained from ensemble averaging techniques (phase-locked waveform). Experimental data over extensive spatial regions of poststenotic fields were taken, employing a two-component laser Doppler velocimeter LDV. Constant time sampling techniques for performing data or frequency analyses were used to avoid velocity bias and to study the evolution of poststenotic flow disturbances. It is found that different types of flow disturbances exist downstream of the constriction. Data analysis methods with the aid of flow visualization allow accurate classification of the disturbances which are sensitive indicators of mild to moderate constrictions. Although the present study was motivated by a biological situation, sufficient data were reported in detail that they may also be used by investigators working in computational fluid dynamics.  相似文献   

11.

In rock grouting, idealized 2D-radial laminar flow of yield stress fluids (YSF) is a fundamental flow configuration that is used for cement grout spread estimation. A limited amount of works have presented analytical and numerical solutions on the radial velocity profiles between parallel disks. However, to the best of our knowledge, there has been no experimental work that has presented measured velocity profiles for this geometry. In this paper, we present velocity profiles of Carbopol (a simple YSF), measured by pulsed ultrasound velocimetry within a radial flow model. We describe the design of the physical model and then present the measured velocity profiles while highlighting the plug-flow region and slip effects observed for three different apertures and volumetric flow rates. Although the measured velocity profiles exhibited wall slip, there was a reasonably good agreement with the analytical solution. We then discuss the major implications of our work on radial flow.

  相似文献   

12.
Measurements were conducted on Refrigerant-134a flowing through short tube orifices with length-to-diameter (L/D) ratios ranging from 5 to 20. Both two-phase and subcooled liquid flow conditions entering the short tube were examined for upstream pressures ranging from 896 to 1448 kPa and for qualities as high as 10% and subcoolings as high as 13.9°C. Data were analyzed as a function of the main operating variables and tube geometry. Semi-empirical models for both single- and two-phase flow at the inlet of the short tubes were developed to predict the mass flow of Refrigerant-134a through short tube orifices.

Choked flow conditions for Refrigerant-134a were typically established when downstream pressures were reduced below the saturation pressure corresponding to the inlet temperature. The flow rate strongly depended on the upstream pressure and upstream subcooling/quality. The mass flow also depended on cross-sectional area and short tube length. The mass flow model utilized a modified orifice equation that formulated the mass flow as a function of normalized operating variables and short tube geometry. For a two-phase flow entering the short tube, the modified orifice equation was corrected using a theoretically derived expression that related the liquid portion of the mass flow under two-phase conditions to a flow that would occur if the flow were a single-phase liquid. It was found that for sharp-edged short tubes with single- and two-phase flow, approximately 95% of the measured data and model's prediction were within ±15% of each other.  相似文献   


13.
Polymer solutions and melts can exhibit large upstream corner and lip vortices, unstable and diverging flow and an enhanced pressure drop when flowing through a geometry containing a constriction. In the present work, we use a planar microfluidic device to show that the length of the downstream constriction plays an important role in the upstream kinematics and the extra pressure drop. That is, the elastic flow phenomena observed upstream of a constriction during entry flows of polymer solutions are not exclusively a result of the stretching dynamics induced by the converging flow—the downstream relaxation events are, at least, equally important. Flow visualization experiments with semi-dilute solutions of a high molecular weight polymer showed that large stable symmetric vortices could be reduced to highly chaotic asymmetric flow, merely by increasing the length of the constriction—the Reynolds number and elasticity number were both held constant. This was accompanied by a higher extra pressure. These results support the hypothesis that elastic flow instabilities originate downstream of the constriction (at the expansion) and move progressively upstream with time and/or flowrate. These findings may also partly explain the discrepancies commonly observed between the results of entry flow experiments and numerical simulations, in which the downstream geometry is very rarely considered. Lastly, we illustrate how to minimize the occurrence of unstable flow upstream of a constriction, which is a necessary condition for closed microrheometry devices used to characterize low viscosity elastic fluids.  相似文献   

14.
To simulate turbulent flow over a rough wall without resolving complicated rough geometries, a macroscopic rough wall model is developed based on spatial (plane) averaging theory. The plane-averaged drag force term, which arises through averaging the Navier–Stokes equations in a plane parallel to a rough wall, can be modeled using a plane porosity and a plane hydraulic diameter. To evaluate the developed model, direct and macroscopic model simulations for turbulence over irregularly distributed semi-spheres at Reynolds number of 300 are carried out using the D3Q27 multiple-relaxation time lattice Boltzmann method. The results show that the developed model can be used to predict rough wall skin friction. The results agree quantitatively with standard turbulence statistics such as mean velocity and Reynolds stress profiles with the fully resolved DNS data. Since velocity dispersion occurs inside the rough wall and is found to contribute to turbulence energy dissipation, which the developed model cannot account for, the developed model fails to reproduce dispersion-related turbulence energy dissipation. However, it is found that the plane-averaged drag force term can successfully recover the deficiency of dispersion-related turbulence energy dissipation.  相似文献   

15.
Experiments were carried out to determine the upstream and downstream influence of a 180° pipe bend on the flow through the bend. A laser Doppler anemometer was used to measure the axial velocity at various locations before and after the bend. Two bends, of radius ratios 0.08 and 0.30, were studied at a Reynolds number of about 400, corresponding to Dean numbers of 110 and 220, respectively. Results indicate that the bend influence extended to one diameter upstream for a Dean number of 220, but no upstream influence was observed for a Dean number of 110. The corresponding downstream influence of the bend was 14 and 11 diameters, respectively. These results compare well to a recent analysis on entry flow into a pipe bend.  相似文献   

16.
We examine stability of fully developed isothermal unidirectional plane Poiseuille–Couette flows of an incompressible fluid whose viscosity depends linearly on the pressure as previously considered in Hron et al. [J. Hron, J. Málek, K.R. Rajagopal, Simple flows of fluids with pressure-dependent viscosities, Proc. R. Soc. Lond. A 457 (2001) 1603–1622] and Suslov and Tran [S.A. Suslov, T.D. Tran, Revisiting plane Couette–Poiseuille flows of a piezo-viscous fluid, J. Non-Newtonian Fluid Mech. 154 (2008) 170–178]. Stability results for a piezo-viscous fluid are compared with those for a Newtonian fluid with constant viscosity. We show that piezo-viscous effects generally lead to stabilisation of a primary flow when the applied pressure gradient is increased. We also show that the flow becomes less stable as the pressure and therefore the fluid viscosity decrease downstream. These features drastically distinguish flows of a piezo-viscous fluid from those of its constant-viscosity counterpart. At the same time the increase in the boundary velocity results in a flow stabilisation which is similar to that observed in Newtonian fluids with constant viscosity.  相似文献   

17.
Two-fluid flow is examined analytically and numerically for increased flow rates through a channel with surface roughness or branching or both. The viscosity and density ratios of the fluids are of order unity. There is much concern in terms of applications as well as fluid dynamical phenomena in configurations where one fluid is present only as a thin layer near an outer wall, leaving the other fluid occupying the channel core and part of a viscous wall layer. The interactive dynamics in both regions is studied and numerical and asymptotic analyses are performed. The major situations examined are: the flow to two symmetrically bifurcating daughters and the flow in a single channel over a rough wall, as well as a combination of the two situations. The principal phenomena of interest are conditions for flow reversal, the presence of upstream influence and the trajectories of the injected fluid as the density or viscosity ratio varies. Special relatively thin or thinning wall layers are produced when the core fluid viscosity increases or when the fluid travels downstream into a daughter vessel.  相似文献   

18.
We study possible steady states of an infinitely long tube made of a hyperelastic membrane and conveying either an inviscid, or a viscous fluid with power-law rheology. The tube model is geometrically and physically nonlinear; the fluid model is limited to smooth changes in the tube’s radius. For the inviscid case, we analyse the tube’s stretch and flow velocity range at which standing solitary waves of both the swelling and the necking type exist. For the viscous case, we first analyse the tube’s upstream and downstream limit states that are balanced by infinitely growing upstream (and decreasing downstream) fluid pressure and axial stress caused by fluid viscosity. Then we investigate conditions that can connect these limit states by a single solution. We show that such a solution exists only for sufficiently small flow speeds and that it has a form of a kink wave; solitary waves do not exist. For the case of a semi-infinite tube (infinite either upstream or downstream), there exist both kink and solitary wave solutions. For finite-length tubes, there exist solutions of any kind, i.e. in the form of pieces of kink waves, solitary waves, and periodic waves.  相似文献   

19.
Effect of the backward-facing step heights on turbulent mixed convection flow along a vertical flat plate is examined experimentally. The step geometry consists of an adiabatic backward-facing step, an upstream wall and a downstream wall. Both the upstream and downstream walls are heated to a uniform and constant temperature. Laser–Doppler velocimeter and cold wire anemometer were used, respectively, to measure simultaneously the time-mean velocity and temperature distributions and their turbulent fluctuations. The experiment was carried out for step heights of 0, 11, and 22 mm, at a free stream air velocity, u, of 0.41 m/s, and a temperature difference, ΔT, of 30 °C between the heated walls and the free stream air. The present results reveal that the turbulence intensity of the streamwise and transverse velocity fluctuations and the intensity of temperature fluctuations downstream of the step increase as the step height increases. Also, it was found that both the reattachment length and the heat transfer rate from the downstream heated wall increase with increasing step height.  相似文献   

20.
Summary Developing and fully developed velocity profiles were measured for viscoelastic fluids flowing through an abrupt 2 to 1 glass-contraction. An R 16Weissenberg-Rheogoniometer was used to measure the rheological properties of the viscoelastic fluids in the shear rates range of interest in the contraction. The measured entry lengths for the viscoelastic fluids were significantly less than predictions and experimental values for inelastic fluids with the same power-law parameters. Deviations from inelastic entry behaviour ranged from 11.6–100%, were independent ofReynolds number, but were strongly dependent on the ratio of the friction velocity to the shear wave velocity. Increasing the friction velocity relative to the shear wave velocity resulted in an increased deviation from inelastic behaviour. When the friction velocity was of the same order as the shear wave velocity a zero entry length and a fully developed entry velocity profile were observed. Further increase in the friction velocity relative to the shear wave velocity resulted in anomalous entry behaviour accompanied by unusual flow patterns upstream of the contraction.
Zusammenfassung Es wurden sich bildende sowie voll ausgebildete Geschwindigkeitsprofile viskoelastischer Flüssigkeiten in einer scharfkantigen Rohrverengung von 2 zu 1 gemessen. Ein Weissenbergsches Rheogoniometer R 16 diente zur Charakterisierung der viskoelastischen Flüssigkeiten im betreffenden Deformationsgeschwindigkeitsbereich.Meßergebnisse für die Einlauflänge viskoelastischer Flüssigkeiten weichen bedeutend von den Voraussagen sowie von Meßergebnissen für unelastische Flüssigkeiten ab, die, nach demOstwald- de Waeleschen Modell berechnet, die gleichen Kenngrößen aufzeigen.Die Abweichung vom viskosen Einlaufverhalten beträgt 11,6 bis 100%. Sie ist unabhängig von der Reynoldschen Zahl, hängt aber sehr stark ab von dem Verhältnis zwischen zwei Geschwindigkeiten u*=Schubspannungsgeschwindigkeit undu=Scherwellengeschwindigkeit.Eine Erhöhung vonu * gegenüberu verursacht eine erhöhte Abweichung vom unelastischen Verhalten. Wenn die zwei Geschwindigkeitenu * undu von der gleichen Größenordnung sind, verschwindet die Einlaufsentwicklung und ein vollausgebildetes Geschwindigkeitsprofil tritt schon am Eingang auf. Ein weiteres Erhöhen vonu * überu verursacht anomales Einlaufverhalten mit ungewöhnlichem Strömungsbild oberhalb der Verengung.


On Sabbatical Leave: Dept. of Chemical Engineering, University of Toronto, Toronto 181, Ontario, Canada.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号