首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The gecko has inspired numerous synthetic adhesive structures, yet under shear loading conditions, general design criteria remains underdeveloped. To provide guidance for bio‐inspired adhesives under shear, a simple scaling theory is used to investigate the relevant geometric and material parameters. The total compliance of an elastic attachment feature is described over many orders of magnitude in aspect ratio through a single continuous function using the superposition of multiple deformation modes such as bending, shear deformation, and tensile elongation. This allows for force capacity predictions of common geometric control parameters such as thickness, aspect ratio, and contact area. This superposition principal is extended to develop criteria for patterned interfaces under shear loading. Importantly, the adhesive patterns under shear are controlled through the compliance in the direction of loading. These predictions are confirmed experimentally using macroscopic building blocks over an extensive range of aspect ratio and contact area. Over 25 simple and complex patterns with various contact geometries are examined, and the effect of geometry and material properties on the shear adhesion behavior is discussed. Furthermore, all of these various attachment features are described with a single scaling parameter, offering control over orders of magnitude in adhesive force capacity for a variety of applications.  相似文献   

3.
Wearable and implantable bioelectronics are receiving a great deal of attention because they offer huge promise in personalized healthcare. Currently available bioelectronics generally rely on external aids to form an attachment to the human body, which leads to unstable performance in practical applications. Self‐adhesive bioelectronics are highly desirable for ameliorating these concerns by offering reliable and conformal contact with tissue, and stability and fidelity in the signal detection. However, achieving adequate and long‐term self‐adhesion to soft and wet biological tissues has been a daunting challenge. Recently, mussel‐inspired hydrogels have emerged as promising candidates for the design of self‐adhesive bioelectronics. In addition to self‐adhesiveness, the mussel‐inspired chemistry offers a unique pathway for integrating multiple functional properties to all‐in‐one bioelectronic devices, which have great implications for healthcare applications. In this report, the recent progress in the area of mussel‐inspired self‐adhesive bioelectronics is highlighted by specifically discussing: 1) adhesion mechanism of mussels, 2) mussel‐inspired hydrogels with long‐term and repeatable adhesion, 3) the recent advance in development of hydrogel bioelectronics by reconciling self‐adhesiveness and additional properties including conductivity, toughness, transparency, self‐healing, antibacterial properties, and tolerance to extreme environment, and 4) the challenges and prospects for the future design of the mussel‐inspired self‐adhesive bioelectronics.  相似文献   

4.
Gecko adhesion has inspired the fabrication of various dry adhesive surfaces, most of which are developed to be used under atmospheric conditions. However, applications of gecko‐inspired surfaces can be expanded to vacuum and even space environment due to the characteristics of van der Waals interactions, which are always present between materials regardless of the surrounding environment. In this paper, a controllable, anisotropic dry adhesion in vacuum is demonstrated with gecko‐inspired wedged dry adhesive surfaces fabricated using an ultraprecision diamond cutting mold. The adhesion and friction properties of the wedge‐structured surfaces are systematically characterized in loading–pulling mode and loading–dragging–pulling mode. The surfaces show significant anisotropic adhesion (Pad ≈ 10.5 kPa vs Pad ≈ 0.7 kPa) and friction (Pf ≈ 50 kPa vs Pf ≈ 30 kPa) when actuated in gripping and releasing direction, respectively. The wedge‐structured surfaces in vacuum show comparable properties as exposed in atmosphere. A three‐legged gripper is designed to pick up, hold, and release a patterned silicon wafer in vacuum. The study demonstrates a green, high‐yield, and low‐cost method to fabricate a reliable and durable mold for gecko inspired anisotropic dry adhesive surfaces and the potential application of dry adhesive surface in vacuum.  相似文献   

5.
Biologically inspired, fibrillar dry adhesives continue to attract much attention as they are instrumental for emerging applications and technologies. To date, the adhesion of micropatterned gecko‐inspired surfaces has predominantly been tested on stiff, smooth substrates. However, all natural and almost all artificial surfaces have roughnesses on one or more different length scales. In the present approach, micropillar‐patterned PDMS surfaces with superior adhesion to glass substrates with different roughnesses are designed and analyzed. The results reveal for the first time adhesive and nonadhesive states depending on the micropillar geometry relative to the surface roughness profile. The data obtained further demonstrate that, in the adhesive regime, fibrillar gecko‐inspired adhesive structures can be used with advantage on rough surfaces; this finding may open up new applications in the fields of robotics, biomedicine, and space exploration.  相似文献   

6.
Anisotropic microstructures are widely used by being cleverly designed to achieve important functions. Mammals' respiratory tract is filled with dense cilia that rhythmically swing back and forth in a unidirectional wave to propel mucus and harmful substances out of the lung through larynx. Inspired by the ciliary structure and motion mechanism of the respiratory tract systems, a viscoelastic microsphere transporting strategy based on integration of airway cilium‐like structure and magnetically responsive flexible conical arrays is demonstrated. Under external magnetic fields, the viscoelastic microspheres can be directionally and continuously transported alongside the swing of the cilia‐like arrays that contain magnetic particles. This work provides a promising route for the design of advanced medical applications in directional transport of microspheres, drug delivery systems, ciliary dyskinesia treating, and self‐cleaning without liquid.  相似文献   

7.
The biomimetic principle of harnessing topographical structures to determine liquid motion behavior represents a cutting‐edge direction in constructing green transportation systems without external energy input. Here, inspired by natural Nepenthes peristome, a novel anisotropic wettability surface with characteristic structural features of periodically aligned and overlapped arch‐shaped microcavities, formed by employing ferrofluid assemblies as dynamic templates, is presented. The magnetic strength and orientation are precisely adjustable during the generation process, and thus the size and inclination angle of the ferrofluid droplet templates could be tailored to make the surface morphology of the resultant polymer replica achieve a high degree of similarity to the natural peristome. The resultant anisotropic wettability surface enables autonomous unidirectional water transportation in a fast and continuous way. In addition, it could be tailored into arbitrary shapes to induce water flow along a specific curved path. More importantly, based on the anisotropic wettability surface, novel pump‐free microfluidic devices are constructed to implement multiphase flow reactions, which offer a promising solution to building low‐cost, portable platform for lab‐on‐a‐chip applications.  相似文献   

8.
The rapid progress in flexible electronic devices has attracted immense interest in many applications, such as health monitoring devices, sensory skins, and implantable apparatus. Here, inspired by the adhesion features of mussels and the color shift mechanism of chameleons, a novel stretchable, adhesive, and conductive structural color film is presented for visually flexible electronics. The film is generated by adding a conductive carbon nanotubes polydopamine (PDA) filler into an elastic polyurethane (PU) inverse opal scaffold. Owing to the brilliant flexibility and inverse opal structure of the PU layer, the film shows stable stretchability and brilliant structural color. Besides, the catechol groups on PDA impart the film with high tissue adhesiveness and self‐healing capability. Notably, because of its responsiveness, the resultant film is endowed with color‐changing ability that responds to motions, which can function as dual‐signal soft human‐motion sensors for real‐time color‐sensing and electrical signal monitoring. These features make the bio‐inspired hydrogel‐based electronics highly potential in the flexible electronics field.  相似文献   

9.
Biomineralization, the natural pathway of assembling biogenic inorganic compounds, inspires us to exploit unique, effective strategies to fabricate functional materials with intricate structures. In this article, the recent advances in bio‐inspired synthesis of minerals—with a focus on those of calcium‐based minerals—and their applications to the design of functional materials for energy, environment, and biomedical fields are reviewed. Biomimetic mineralization is extending its application range to unconventional area such as the design of component materials for lithium‐ion batteries and elaborately structured composite materials utilizing carbon dioxide gas. Materials with highly enhanced mechanical properties are synthesized through emulating the nacre structure. Studies of bioactive minerals‐carbon hybrid materials show an expansion of potential applications to fields ranging from interdisciplinary science to practical engineering such as the fabrication of reinforced bone‐implantable materials.  相似文献   

10.
Conductive hydrogels are a promising class of materials to design bioelectronics for new technological interfaces with human body, which are required to work for a long‐term or under extreme environment. Traditional hydrogels are limited in short‐term usage under room temperature, as it is difficult to retain water under cold or hot environment. Inspired by the antifreezing/antiheating behaviors from nature, and based on mussel chemistry, an adhesive and conductive hydrogel is developed with long‐lasting moisture lock‐in capability and extreme temperature tolerance, which is formed in a binary‐solvent system composed of water and glycerol. Polydopamine (PDA)‐decorated carbon nanotubes (CNTs) are incorporated into the hydrogel, which assign conductivity to the hydrogel and serve as nanoreinforcements to enhance the mechanical properties of the hydrogel. The catechol groups on PDA and viscous glycerol endow the hydrogel with high tissue adhesiveness. Particularly, the hydrogel is thermal tolerant to maintain all the properties under extreme wide tempreature spectrum (?20 or 60 °C) or stored for a long term. In summary, this mussel‐inspired hydrogel is a promising material for self‐adhesive bioelectronics to detect biosignals in cold or hot environments, and also as a dressing to protect skin from injuries related to frostbites or burns.  相似文献   

11.
Colloidal aggregates with well‐controlled sizes, shapes, and structures have been fabricated by dewetting aqueous dispersions of monodispersed spherical colloids across surfaces patterned with two‐dimensional arrays of relief structures (or templates). The capability and feasibility of this approach have been demonstrated with the organization of polymer latex or silica beads into homo‐aggregates, including circular rings; polygonal and polyhedral clusters; and linear, zigzag, and spiral chains. It was also possible to generate hetero‐aggregates in the configuration of HF and H2O molecules that contained spherical colloids of different sizes, compositions, densities, functions, or a combination of these features. These uniform, well‐defined aggregates of spherical colloids are ideal model systems to investigate the aerodynamic, hydrodynamic, and optical properties of colloidal particles characterized by non‐spherical shapes and/or complex topologies. They can also serve as a new class of building blocks to generate hierarchically self‐assembled structures that are expected to exhibit interesting features valuable to areas ranging from condensed matter physics to photonics.  相似文献   

12.
Natural structure‐forming processes found in biological systems are fantastic and perform at ambient temperatures, in contrast with anthropogenic technologies that commonly require harsh conditions. A new research direction “bioprocess‐inspired fabrication” is proposed to develop novel fabrication techniques for advanced materials. Enamel, an organic–inorganic composite biomaterial with outstanding mechanical performance and durability, is formed by repeating the basic blocks consisting of columnar hydroxyapatite or fluorapatite and an organic matrix. Inspired by the enamel formation process, a microscale additive manufacturing method is proposed for achieving a multilayered organic–inorganic columnar structure. In this approach, rutile titanium dioxide (TiO2) nanorods, polymers, and graphene oxide (GO) are sequentially assembled in a layer‐by‐layer fashion to form an organic–inorganic structure. In particular, GO serves as a substrate for TiO2 nanorods and interacts with polymers, jointly leading to the strength of the composites. Impressively, this enamel‐like structure material has hardness (1.56 ± 0.05 GPa) and ultrahigh Young's modulus (81.0 ± 2.7 GPa) comparable to natural enamel, and viscoelastic property (0.76 ± 0.12 GPa) superior to most solid materials. Consequently, this biomimetic synthetic approach provides an in‐depth understanding for the formation process of biomaterials and also enables the exploration of a new avenue for the preparation of organic–inorganic composite materials.  相似文献   

13.
Self‐assembly of 3D structures presents an attractive and scalable route to realize reconfigurable and functionally capable mesoscale devices without human intervention. A common approach for achieving this is to utilize stimuli‐responsive folding of hinged structures, which requires the integration of different materials and/or geometric arrangements along the hinges. It is demonstrated that the inclusion of Kirigami cuts in planar, hingeless bilayer thin sheets can be used to produce complex 3D shapes in an on‐demand manner. Nonlinear finite element models are developed to elucidate the mechanics of shape morphing in bilayer thin sheets and verify the predictions through swelling experiments of planar, millimeter‐scaled PDMS (polydimethylsiloxane) bilayers in organic solvents. Building upon the mechanistic understandings, The transformation of Kirigami‐cut simple bilayers into 3D shapes such as letters from the Roman alphabet (to make “ADVANCED FUNCTIONAL MATERIALS”) and open/closed polyhedral architectures is experimentally demonstrated. A possible application of the bilayers as tether‐less optical metamaterials with dynamically tunable light transmission and reflection behaviors is also shown. As the proposed mechanistic design principles could be applied to a variety of materials, this research broadly contributes toward the development of smart, tetherless, and reconfigurable multifunctional systems.  相似文献   

14.
Carbon‐based materials are widely used as light‐driven soft actuators relying on their thermal desorption or expansion. However, applying a passive layer in such film construction greatly limits the actuating efficiency, e.g., bending amplitude and speed. In this work, a dual active layer strengthened bilayer composite film made of graphene oxide (GO)–polydopamine (PDA)–gold nanoparticles (Au NPs)/polydimethylsiloxane (PDMS) is developed. In this film, the conventional passive layer is replaced by another AuNPs‐enhanced thermal responsive layer. When applying NIR light exposure, the whole film deforms controllably resulting from the water loss in the GO–PDA–Au NPs layer and thermal expansion in the PDMS layer. Benefiting from the dual active bilayer mechanism, the thin film's actuating efficiency is dramatically improved compared with that of conventional methods. Specifically, the bending amplitude is enhanced up to 173%, and the actuating speed is improved to 3.5‐fold. The soft actuator can act as an artificial arm with high actuating strength and can be used as a wireless gripper. Moreover, the film can be designed as soft robots with various locomotion modes including linear, rolling, and steering motions. The developed composite film offers new opportunities for biomimetic soft robotics as well as future applications.  相似文献   

15.
Nature is a school for scientists and engineers. Inherent multiscale structures of biological materials exhibit multifunctional integration. In nature, the lotus, the water strider, and the flying bird evolved different and optimized biological solutions to survive. In this contribution, inspired by the optimized solutions from the lotus leaf with superhydrophobic self‐cleaning, the water strider leg with durable and robust superhydrophobicity, and the lightweight bird bone with hollow structures, multifunctional metallic foams with multiscale structures are fabricated, demonstrating low adhesive superhydrophobic ­self‐cleaning, striking loading capacity, and superior repellency towards different corrosive solutions. This approach provides an effective avenue to the development of water strider robots and other aquatic smart devices floating on water. Furthermore, the resultant multifunctional metallic foam can be used to construct an oil/water separation apparatus, exhibiting a high separation efficiency and long‐term repeatability. The presented approach should provide a promising solution for the design and construction of other multifunctional metallic foams in a large scale for practical applications in the petro‐chemical field. Optimized biological solutions continue to inspire and to provide design idea for the construction of multiscale structures with multifunctional integration.  相似文献   

16.
Antibacterial hydrogel has received extensive attention in soft tissue repair, especially preventing infections those associated with impaired wound healing. However, it is challenging in developing an inherent antibacterial hydrogel integrating with excellent cell affinity and superior mechanical properties. Inspired by the mussel adhesion chemistry, a contact‐active antibacterial hydrogel is proposed by copolymerization of methacrylamide dopamine (MADA) and 2‐(dimethylamino)ethyl methacrylate and forming an interpenetrated network with quaternized chitosan. The reactive catechol groups of MADA endow the hydrogel with contact intensified bactericidal activity, because it increases the exposure of bacterial cells to the positively charged groups of the hydrogel and strengthens the bactericidal effect. MADA also maintains the good adhesion of fibroblasts to the hydrogel. Moreover, the hybrid chemical and physical cross‐links inner the hydrogel network makes the hydrogel strong and tough with good recoverability. In vitro and in vivo tests demonstrate that this tough and contact‐active antibacterial hydrogel is a promising material to fulfill the dual functions of promoting tissue regeneration and preventing bacterial infection for wound‐healing applications.  相似文献   

17.
Anatomic differences on the toe pad epithelial cells of torrent and tree frogs (elongated versus regular geometry) are believed to account for superior ability of torrent frogs to attach to surfaces in the presence of running water. Here, the friction properties of artificial hexagonal arrays of polydimethylsiloxane (PDMS) pillars (elongated and regular) in the presence of water are compared. Elongated pillar patterns show significantly higher friction in a direction perpendicular to the long axis. A low bending stiffness of the pillars and a high edge density of the pattern in the sliding direction are the key design criteria for the enhanced friction. The elongated patterns also favor orientation‐dependent friction. These findings have important implications for the development of new reversible adhesives for wet conditions.  相似文献   

18.
The development of soft pneumatic actuators based on composites consisting of elastomers with embedded sheet or fiber structures (e.g., paper or fabric) that are flexible but not extensible is described. On pneumatic inflation, these actuators move anisotropically, based on the motions accessible by their composite structures. They are inexpensive, simple to fabricate, light in weight, and easy to actuate. This class of structure is versatile: the same principles of design lead to actuators that respond to pressurization with a wide range of motions (bending, extension, contraction, twisting, and others). Paper, when used to introduce anisotropy into elastomers, can be readily folded into 3D structures following the principles of origami; these folded structures increase the stiffness and anisotropy of the elastomeric actuators, while being light in weight. These soft actuators can manipulate objects with moderate performance; for example, they can lift loads up to 120 times their weight. They can also be combined with other components, for example, electrical components, to increase their functionality.  相似文献   

19.
Mimicking the skin's non‐linear self‐limiting mechanical characteristics is of great interest. Skin is soft at low strain but becomes stiff at high strain and thereby can protect human tissues and organs from high mechanical loads. Herein, the design of a skin‐inspired substrate is reported based on a spaghetti‐like multi‐nanofiber network (SMNN) of elastic polyurethane (PU) nanofibers (NFs) sandwiched between stiff poly(vinyldenefluoride‐co‐trifluoroethylene) (P(VDF‐TrFE)) NFs layers embedded in polydimethylsiloxane elastomer. The elastic moduli of the stretchable skin‐inspired substrate can be tuned in a range that matches well with the mechanical properties of skins by adjusting the loading ratios of the two NFs. Confocal imaging under stretching indicates that PU NFs help maintain the stretchability while adding stiff P(VDF‐TrFE) NFs to control the self‐limiting characteristics. Interestingly, the Au layer on the substrate indicates a negligible change in the resistance under cyclic (up to 7000 cycles at 35% strain) and dynamic stretching (up to 35% strain), which indicates the effective absorption of stress by the SMNN. A stretchable chemoresistive gas sensor on the skin‐inspired substrate also demonstrates a reasonable stability in NO2 sensing response under strain up to 30%. The skin‐inspired substrate with SMNN provides a step toward ultrathin stretchable electronics.  相似文献   

20.
Herein, multifunctional mimics of viral architectures and infections self‐assembled from tailor‐made dendritic lipopeptides for programmed targeted drug delivery are reported. These viral mimics not only have virus‐like components and nanostructures, but also possess virus‐like infections to solid tumor and tumor cells. Encouragingly, the viral mimics provide the following distinguished features for tumor‐specific systemic delivery: i) stealthy surface to resist protein interactions and prolong circulation time in blood, ii) well‐defined nanostructure for passive targeting to solid tumor site, iii) charge‐tunable shielding for tumor extracellular pH targeting, iv) receptor‐mediated targeting to enhance tumor‐specific uptake, and v) supramolecular lysine‐rich architectures mimicking viral subcellular targeting for efficient endosomal escape and nuclear delivery. This bioinspired design make in vivo tumor suppression by drug‐loaded viral mimics against BALB/c mice bearing 4T1 tumor greatly exceed the positive control group (more than three times). More importantly, viral mimics hold great potentials to reduce side effects and decrease tumor metastasis after systemic administration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号