首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
In the presence of amino acids as environmentally friendly ligands, CuI‐catalyzed Sonogashira cross‐coupling of various aryl halides with phenylacetylene was conducted to afford the corresponding internal alkynes. l ‐Methionine was found to be useful for this palladium‐free and amine‐free coupling reaction. It was also found that the solvent system plays an important role in this reaction, and significantly affects the product formation and reaction rate. Sonogashira coupling of aryl iodides and aryl bromides in dimethylsulfoxide or dimethylformamide gave the coupled products in good to excellent yields. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
An efficient catalytic system using 1‐benzyl‐4‐aza‐1‐azoniabicyclo[2.2.2]octane chloride and palladium chloride ((BeDABCO)2Pd2Cl6) was developed for the Sonogashira reaction. In the presence of a catalytic amount of this efficient, stable homogeneous catalytic system that is non‐sensitive to air and moisture, various aryl halides were efficiently coupled with phenylacetylene in good yields in H2O at 50°C under copper‐free conditions. Benzyl dabco as an efficient ligand and also a quaternary ammonium salt had an efficient stabilizing effect on the Pd(0) species. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

3.
A palladium‐based catalyst supported on acac‐functionalized silica was used as a heterogeneous catalyst for the Sonogashira cross‐coupling reaction of various aryl halides and phenylacetylene under copper‐ and phosphine‐free conditions. This catalytic system serves as an efficient and stable catalyst for this cross‐coupling reaction and allows easy separation and recycling of the catalyst. The catalyst could be recycled for five runs without appreciable loss of its catalytic activity. In addition, the reaction was carried out in water as a green solvent. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

4.
The carbonylative Sonogashira coupling of aryl iodides with terminal alkynes was studied by using thermoregulated ligand–palladium as an efficient and reusable catalyst at 80 °C in water. The corresponding alkynone products were obtained in good to excellent yields under 1 atm of carbon monoxide. The isolation of the products was readily achieved by extraction with ethyl acetate, and the catalyst recovered in water can be reused and recycled up to four times without significant loss in catalytic activity. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
We present here the first synthesis and application to Sonogashira reaction of pyridine‐bis(ferrocene‐isoxazole) Pd(II) complex 5 , prepared from 2,6‐bis‐(5‐ferrocenylisoxazole‐3‐yl)pyridine. Under copper‐ and phosphine‐free conditions, the stable complex 5 efficiently catalyzed the cross‐coupling of aryl halides with terminal alkynes in DMF–H2O with TBAB as an additive, hexahydropyridine as base and affording internal arylated alkynes in moderate to excellent yields. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

6.
This article focuses on a room temperature copper‐free Sonagashira cross‐coupling reaction in ethanol, catalysed by palladium nanoparticles homogeneously deposited on reduced graphene oxide. The catalyst showed efficient catalytic activity towards the said coupling reaction, and was well characterized using various techniques, and could be reused up to six times with almost constant yield of the desired product. The attractions of this protocol are that the reaction completes within short reaction time under ligand‐ and copper‐free conditions and it avoids harsh reaction conditions.  相似文献   

7.
A novel MCM-41-supported sulfur palladium(0) complex was conveniently prepared from commercially available and cheap γ-mercaptopropyltriethoxysilane via immobilization on MCM-41, followed by reacting with palladium chloride and then the reduction with hydrazine hydrate. This complex exhibited excellent performance in Sonogashira coupling reaction.  相似文献   

8.
Pd(OAc)2‐catalyzed Sonogashira coupling reactions of alkynes and a variety of aryl halides with 1,3‐bis(5‐ferrocenylisoxazoline‐3‐yl)benzene as an efficient non‐phosphorus ligand under copper‐free conditions are presented. The main advantages over previous methodologies include low catalyst loading (0.2 mol% Pd(OAc)2 and 0.4 mol% ferrocenyl bisoxazoline ligand are sufficient for these coupling reactions), less problematic reaction medium (water–dimethylformamide) and more convenient operation (no requirement for nitrogen protection).  相似文献   

9.
Palladium nanoparticle‐incorporated metal–organic framework MIL‐101 (Pd/MIL‐101) was successfully synthesized and characterized using X‐ray diffraction, nitrogen physisorption, X‐ray photoelectron, UV–visible and infrared spectroscopies, and transmission electron microscopy. The characterization techniques confirmed high porosity and high surface area of MIL‐101 and high stability of nano‐size palladium particles. Pd/MIL‐101 nanocomposite was investigated for the Sonogashira cross‐coupling reaction of aryl and heteroaryl bromides with various alkynes under copper‐free conditions. The reusability of the catalyst was tested for up to four cycles without any significant loss in catalytic activity. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

10.
The catalytic activity of ortho‐palladated [Pd{C6H2(CH2CH2NH2)‐(OMe)2,3,4}(m‐Br)]2, a complex of homoveratrylamine in the copper‐free Sonogashira coupling reaction has been investigated. This complex is a catalyst that is efficient, stable and non‐sensitive to air and moisture in the Sonogashira reaction. In this homogeneous catalytic system, various aryl halides were efficiently coupled with phenylacetylene in mostly moderate to good yields in N‐methylpyrrolidone at 100 °C under copper‐free conditions. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
Combining the excellent features of halloysite nanoclay and cyclodextrin, a novel hybrid system was designed and synthesized based on covalent attachment of tosylated cyclodextrin to thiosemicarbazide‐functionalized halloysite nanoclay and used for the immobilization of Pd nanoparticles. The resulting hybrid, Pd@HNTs‐T‐CD, was then characterized using various techniques, and successfully used for promoting copper‐ and ligand‐free Sonogashira coupling reactions of halobenzenes and acetylenes in a mixture of water and ethanol. Notably, under Pd@HNTs‐T‐CD catalysis, the reaction could proceed in relatively short reaction time to furnish the corresponding products in high yields. Additionally, the catalyst was recyclable and could be simply recovered and reused for several reaction runs. Results also established negligible leaching of Pd, indicating the efficiency of HNTs‐T‐CD for embedding Pd nanoparticles.  相似文献   

12.
13.
Sonogashira coupling of iodo‐ and bromoarenes and acetylenes using PdEnCat™ 30 in a phosphine‐, copper‐, amine‐, and microwave‐free system was developed, which allows for the preparation of a modulator of glutamate receptor mGluR5. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

14.
The use of water extract of waste papaya bark ash for the in situ generation of palladium nanoparticles (Pd NPs) as an efficient and environmentally friendly basic medium for the Sonogashira reaction at room temperature is reported. This methodology follows green chemistry principles as the reaction is performed using agro waste (natural feedstock) for the generation of the Pd NPs as well as for providing a basic medium for the reaction in the absence of any additional organic or inorganic base, ligand and copper salt, giving excellent yield of cross‐coupled product at room temperature. The reaction conditions are compatible with electronically diverse aryl iodides and electronically diverse alkyne derivatives.  相似文献   

15.
An air‐stable, copper‐free and highly efficient Dppc+PF6?–PdCl2–[bmim][PF6] catalytic system has been developed for the Sonogashira coupling reaction of aryl iodides with various aryl‐ and alkylacetylenes. The catalytic system allows for facile separation and can be recycled at least eight times with minimal loss of activity. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

16.
Bisindoles (BIMs) were modulated as powerful N,N′ donor ligands for the copper‐catalyzed Sonogashira reaction. Ligand screening experiments on 11 BIM compounds found that 3,3′‐(4‐chlorophenyl)methylenebis(1‐methyl‐1H‐indole) (10%) efficiently accelerated CuCl (5%)‐catalyzed cross‐coupling of aryl iodides with terminal alkynes. A wide range of substituted aryl iodides and/or alkyl‐ and aryl‐substituted terminal alkynes were examined, leading to the corresponding coupling products with yields up to 99%. An efficient and scalable protocol for the synthesis of BIM ligands on a gram scale, with extremely low catalyst loading of o‐ClC6H4NH3+Cl?, was also developed with a reaction time of 20 min with yields up to 93%. This novel N,N′ ligand was air‐stable, easily available and highly modulated with low copper loading. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

17.
A polyaniline‐functionalized multiwall carbon nanotube‐supported Cu(I) complex was developed as an efficient catalyst for the Sonogashira reactions of aryl halides with phenylacetylene in the presence of potassium hydroxide in dimethylformamide at 135 °C under nitrogen atmosphere. The corresponding products were generated in good to excellent yields using this catalytic system. Moreover, the multiwall carbon nanotube‐supported Cu(I) catalyst was simply recycled and reused for six consecutive runs.  相似文献   

18.
PdCo bimetallic nanoparticles (NPs) were decorated over three‐dimensional graphene (3DG) in a facile manner by reducing palladium chloride and cobalt chloride in the presence of ethylene glycol as reducing, stabilizing and dispersing agent. The PdCo NPs–3DG nanocomposite was characterized using Raman, X‐ray photoelectron and energy‐dispersive X‐ray spectroscopies, X‐ray diffraction and transmission electron microscopy. The obtained catalyst can act as an efficient catalyst for Sonogashira cross‐coupling reactions in aqueous media.  相似文献   

19.
20.
Two new phosphinite ligands based on ionic liquids [(Ph2PO)C7H14N2Cl]Cl ( 1 ) and [(Cy2PO)C7H14N2Cl]Cl ( 2 ) were synthesized by reaction of 1‐(3‐chloro‐2‐hydoxypropyl)‐3‐methylimidazolium chloride, [C7H15N2OCl]Cl, with one equivalent of chlorodiphenylphosphine or chlorodicyclohexylphosphine, respectively, in anhydrous CH2Cl2 and under argon atmosphere. The reactions of 1 and 2 with MCl2(cod) (M = Pd, Pt; cod = 1,5‐cyclooctadiene) yield complexes cis‐[M([(Ph2PO)C7H14N2Cl]Cl)2Cl2] and cis‐[M(Cy2PO)C7H14N2Cl]Cl)2Cl2], respectively. All complexes were isolated as analytically pure substances and characterized using multi‐nuclear NMR and infrared spectroscopies and elemental analysis. The catalytic activity of palladium complexes based on ionic liquid phosphinite ligands 1 and 2 was investigated in Suzuki cross‐coupling. They show outstanding catalytic activity in coupling of a series of aryl bromides or aryl iodides with phenylboronic acid under the optimized reaction conditions in water. The complexes provide turnover frequencies of 57 600 and 232 800 h?1 in Suzuki coupling reactions of phenylboronic acid with p‐bromoacetophenone or p‐iodoacetophenone, respectively, which are the highest values ever reported among similar complexes for Suzuki coupling reactions in water as sole solvent in homogeneous catalysis. Furthermore, the palladium complexes were also found to be highly active catalysts in the Heck reaction affording trans‐stilbenes. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号