首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Luminescent EuIII complexes with tripodal heptadentate N7 ligands containing three imidazole groups, [EuIII(H3L2-H)(ac)](ClO4)2·H2O (1), [EuIII(H3L2-Me)(ac)](ClO4)2·2EtOH (2), and [EuIII(H3L4-Me)(ac)](ClO4)2·H2O (3), were synthesized and characterized, where H3L2-H, H3L2-Me, and H3L4-Me are the tripodal ligands derived from the 1:3 condensation of tris(2-aminoethyl)amine and either 4-formylimidazole, 2-methyl-4-formylimidazole, and 4-methyl-5-formylimidazole, respectively, and ac denotes an acetate ion. Single-crystal X-ray analyses revealed that each EuIII ion is coordinated by a tripodal heptadentate N7 ligand and two oxygen atoms of the acetate ion as a bidentate ligand. The complexes displayed sharp emission bands based on the f-f transitions by excitation at 261 nm in acetonitrile. The emission intensities increased in the order 1 < 2 < 3 in acetonitrile, while the emission spectra were quenched in aqueous solution due to the partial dissociation of the acetate ion and tripodal ligand.  相似文献   

2.
Solid complexes of five derivatives of thio-Schiff bases with La(III) and Ce(III) ions were prepared and characterized by elemental and thermogravimetric analyses. The suggested general formula of the solid complexes is [ML2(H2O)X]·2H2O, whereM=trivalent lanthanide ion,L=Schiff base andX=Cl? or ClO 4 ? . Information about the water of hydration, the coordinated water molecules, the coordination chemistry and the thermal stability of these complexes was obtained and is discussed. Additionally, a general scheme of thermal decomposition of the lanthanide-Schiff base complexes is proposed.  相似文献   

3.
In the current work, two triazine‐based multidentate ligands (H2L1 and H2L2) and their homo‐dinuclear Mn (II), mononuclear Ln (III) and hetero‐dinuclear Mn (II)/Ln (III) (Where Ln: Eu or La) complexes were synthesized and characterized by spectroscopic and analytical methods. Single crystals of a homo‐dinuclear Mn (II) complex {[Mn (HL1)(CH3OH)](ClO4·CH3OH}2 ( 1 ) were obtained and the molecular structure was determined by X‐ray diffraction method. In the structure of the complex, each Mn (II) ion is seven‐coordinate and one of the phenolic oxygen bridges two Mn (II) centre forming a dimeric structure. The UV–Vis. and photoluminescence properties of synthesized ligands and their metal complexes were investigated in DMF solution and the compounds showed emission bands in the UV–Vis. region. The catecholase enzyme‐like activity of the complexes were studied for 3,5‐DTBC → 3,5‐DTBQ conversion in the presence of air oxygen. Homo‐dinuclear Mn (II) complexes ( 1 and 4 ) were found to efficiently catalyse 3,5‐DTBC → 3,5‐DTBQ conversion with the turnover numbers of 37.25 and 35.78 h?1 (kcat), respectively. Mononuclear Eu (III) and La (III) complexes did not show catecholase activity.  相似文献   

4.
[CrIII(LD)(Urd)(H2O)4](NO3)2?·?3H2O (LD?=?Levodopa; Urd?=?uridine) was prepared and characterized. The product of the oxidation reaction was examined using HPLC. Kinetics of the oxidation of [CrIII(LD)(Urd)(H2O)4]2+ with N-bromosuccinimide (NBS) in an aqueous solution was studied spectrophotometrically, with 1.0–5.0?×?10?4?mol?dm?3 complex, 0.5–5.0?×?10?2?mol?dm?3 NBS, 0.2–0.3?mol?dm?3 ionic strength (I), and 30–50°C. The reaction is first order with respect to [CrIII] and [NBS], decreases as pH increases in the range 5.46–6.54 and increases with the addition of sodium dodecyl sulfate (SDS, 0.0–1.0?×?10?3?mol?dm?3). Activation parameters including enthalpy, ΔH*, and entropy, ΔS*, were calculated. The experimental rate law is consistent with a mechanism in which the protonated species is more reactive than its conjugate base. It is assumed that the two-step one-electron transfer takes place via an inner-sphere mechanism. A mechanism for this reaction is proposed and supported by an excellent isokinetic relationship between ΔH* and ΔS* for some CrIII complexes. Formation of [CrIII(LD)(Urd)(H2O)4]2+ in vivo probably occurs with patients who administer the anti-Parkinson drug (Levodopa), since CrIII is a natural food element. This work provides an opportunity to identify the nature of such interactions in vivo similar to that in vitro.  相似文献   

5.
Halogeno Metallates of Transition Elements with Cations of Nitrogen‐containing Heterocyclic Bases. VIII Syntheses and Crystal Structures of Novel Bromoferrates(III), Chloro‐, and Aquachloroferrates(III) with Tetrahedral and Octahedral Iron Coordination, among them two Neutral Complexes of Iron(II) and (III) (dmpipzH2)[FeIIIBr4]2 ( 1 ), (trienH2)[FeIIIBr4]Br ( 2 ), (dmpipzH2)[FeIIICl4]Cl ( 3 ), (dmpipzH2)2[FeIII(H2O)2Cl4][FeIIICl4]Cl2 ( 4 ), and (trienH2)[FeIII(H2O)3Cl3]Cl2 ( 5 ) crystallize from aqueous mineralic acid solutions of iron(II) halide and the organic bases (1,4‐dimethylpiperazine or triethylenediammine) in the presence of atmospheric oxygen whereas (dmpipzH2)[FeCl4(H2O)6]Cl2 ( 6 ) was obtained under the exclusion of air. 1 , 2 , and 3 contain the known tetrahedral halogeno complexes, 4 contains a novel octahedral iron(III) complex, and in 6 a neutral binuclear iron(II) complex has been found which has not been described before. The crystal structures and the hydrogen bridging systems of the complexes are described.  相似文献   

6.
Six novel μ-oxamido binuclear complexes, namely Cu(axpn)Ln(L)2(ClO4)3 (Ln: Eu, Gd, Tb, Nd, Ho, Er), where oxpn is N,N'-bis(3-aminopropyl) oxamido, L denotes 5-nitro,10-phenanthroline (abbreviated as NO2-phen), have been synthesized and characterised. The magnetic susceptibility of complexes Cu(oxpn)Gd(NO2-phen)2(ClO4)3.2H2O was measured over the 4–300 K and the observed data were successfully simulated by equation based on spin Hamiltonian operator (H = -2J1 · S2), giving the exchange integral J(Cu-Gd)=-1.62 cm?1. This indicates a weak antiferromagnetic interaction between the Cu(II) and Gd(III) ions.  相似文献   

7.
The Schiff base N,N′‐bis(salicylidene)‐1,5‐diamino‐3‐oxapentane (H2L) and its lanthanide(III) complexes, PrL(NO3)(DMF)(H2O) ( 1 ) and Ho2L2(NO3)2 · 2H2O ( 2 ), were synthesized and characterized by physicochemical and spectroscopic methods. Single crystal X‐ray structure analysis revealed that complex 1 is a discrete mononuclear species. The PrIII ion is nine‐coordinate, forming a distorted capped square antiprismatic arrangement. Complex 2 is a centrosymmetric dinuclear neutral entity in which the HoIII ion is eight‐coordinate with distorted square antiprismatic arrangement. The DNA‐binding properties of H2L and its LnIII complexes were investigated by spectrophotometric methods and viscosity measurements. The results suggest that the ligand H2L and its LnIII complexes both connect to DNA in a groove binding mode; the complexes bind more strongly to DNA than the ligand. Moreover, the antioxidant activities of the LnIII complexes were in vitro determined by superoxide and hydroxyl radical scavenging methods, which indicate that complexes 1 and 2 have OH · and O2– · radical scavenging activity.  相似文献   

8.
Two macrocyclic Schiff base ligands, L1 [1+1] and L2 [2+2], have been obtained in a one-pot cyclocondensation of 1,4-bis(2-formylphenyl)piperazine and 1,3-diaminopropane. Unfortunately, because of the low solubility of both ligands, their separation was unsuccessful. In the direct reaction of these mixed ligands (L1 and L2) and the appropriate metal ions only [CoL1(NO3)]ClO4, [NiL1](ClO4)2, [CuL1](ClO4)2 and [ZnL1(NO3)]ClO4 complexes have been isolated. All the complexes were characterized by elemental analyses, IR, FAB-MS, conductivity measurements and in the case of the [ZnL1(NO3)]ClO4 complex with NMR spectroscopy.  相似文献   

9.
Four cyanide-bridged heterometallic complexes {[CuPb(L 1 )][Fe III (bpb)(CN) 2 ]} 2 ·(ClO 4 ) 2 ·2H 2 O·2CH 3 CN (1), {[CuPb(L 1 )] 2 [Fe II (CN) 6 ](H 2 O) 2 }·10H 2 O (2), {[Cu 2 (L 2 )][Fe III (bpb)(CN) 2 ] 2 }·2H 2 O·2CH 3 OH (3) and {[Cu 2 (L 2 )] 3 [Fe III (CN) 6 ] 2 (H 2 O) 2 }·10H 2 O (4) have been synthesized by treating K[Fe III (bpb)(CN) 2 ] [bpb 2-=1,2-bis(pyridine-2-carboxamido)benzenate] and K 3 [Fe III (CN)] 6 with dinuclear compartmental macrocyclic Schiff-base complexes [CuPb(L 1 )] (ClO 4 ) 2 or [Cu 2 (L 2 )]·(ClO 4 ) 2 , in which H 2 L 1 was derived from 2,6-diformyl-4-methyl-phenol, ethylenediamine, and diethylenetriamine in the molar ratio of 2:1:1 and H 2 L 2 from 2,6-diformyl-4-methyl-phenol and propylenediamine in the molar ratio of 1:1. Single crystal X-ray diffraction analysis reveals that compound 1 displays a cyclic hexanuclear heterotrimetallic molecular structure with alternating [FeⅢ (bpb)(CN) 2 ]- and [CuPb(L 1 )] 2+ units. Complex 2 is of a neutral dumb-bell-type pentanuclear molecular configuration consisting of one [Fe(CN)6] 4- anion sandwiched in two [CuPu(L 1 )] 2+ cations, and the pentanuclear moieties are further connected by the hydrogen bonding to give a 2D supramolecular framework. Heterobimetallic complex 3 is a tetranuclear molecule composed of a centrosymmetric [Cu 2 (L2)] 2+ segment and two terminal cyanide-containing blocks [FeⅢ (bpb)(CN)2 ]- . Octanuclear compound 4 is built from two [Fe(CN)6]3- anions sandwiched in the three [Cu 2 L 2 ] 2+ cations. Investigation of their magnetic properties reveals the overall antiferromagnetic behavior in the series of complexes except 2.  相似文献   

10.
Summary The chelating behaviour of two biologically active ligands, pyridine-2-carboxaldehyde(4-phenyl) thiosemicarbazone(L1H) and pyridine-2-carboxaldehyde thiosemicarbazone(LH), towards FeIII, CoIII, FeII and RhIII has been investigated. The ligands act as tridentate N–N–S donors, resulting in the formation of bis-chelate complexes of the type MIII(A)2X·nH2O (A=L1 or L; X=Cl, ClO4; M=CoIII, RhIII, FeIII), FeII(L1H)2SO4·2H2O and FeII(L1)2·H2O. Biological activity of the ligands and the metal complexes in the form ofin vitro antibacterial activities towardsE. coli has been evaluated and the possible reasons for enhancement of the activity of ligands on coordination to metal ion is discussed.  相似文献   

11.
Three mononuclear cyclometalated iridium(III) complexes having dithiocarbamate ligands, [IrIII(2-C6H4py)2(L)] (where 2-C6H4py?=?2-phenylpyridine; and L1H?=?4-MePipzcdtH, L2H?=?MorphcdtH, and L3H?=?4-BzPipercdtH for 1, 2, and 3, respectively), were synthesized from [Ir(2-C6H4py)2Cl]2·1/4CH2Cl2 by displacing the two bridging chlorides with one dithiocarbamate ligand. The complexes were characterized using physicochemical and spectroscopic tools along with structural analysis of [Ir(2-C6H4py)2(L2)] (2) by single crystal X-ray diffraction. Structural analysis of 2 showed a distorted octahedron in which the nitrogen donor of one 2-phenylpyridine and the carbon donor of another 2-phenylpyridine are in axial positions, trans to one another. Electrochemical analysis by cyclic voltammetry showed the irreversible two-electron equivalent reduction voltammograms of 1, 2, and 3 attributable to Ir(III) to Ir(I). Electronic characterizations of these complexes are consistent with significant delocalization of the sulfur electron density onto the empty metal d-orbital. The intercalative interaction of the complexes with calf thymus DNA was evaluated using absorption, fluorescence quenching, and viscosity measurements. The binding affinities of these complexes with bovine serum albumin were estimated in terms of quenching constants using the Stern–Volmer equation. Study of antibacterial activities of the complexes by agar disk diffusion against some species of pathogenic bacteria was also performed.  相似文献   

12.
The kinetics of oxidation of the chromium(III)‐guanosine 5‐monophosphate complex, [CrIII(L)(H2O)4]3+(L = guanosine 5‐monophosphate) by periodate in aqueous solution to CrVI have been studied spectrophotometrically over the 25–45 °C range. The reaction is first order with respect to both [IO4?] and [CrIII], and increases with pH over the 2.38–3.68 range. Thermodynamic activation parameters have been calculated. It is proposed that electron transfer proceeds through an inner‐sphere mechanism via coordination of IO4? to chromium(III).  相似文献   

13.
Two mononuclear cobalt(III) complexes, namely [LCo(tmtp)(H2O)]ClO4?MeOH ( 1 ) (tmtp = tri(m‐tolyl)phosphine) and [LCo(PPh3)(H2O)]PF6 ( 2 ), have been prepared from a polydentate ligand, N,N′‐bis(3‐methoxysalicylidehydene)cyclohexane‐1,2‐diamine ( H 2 L ). Standard analytical techniques such as elemental analysis and UV–visible and Fourier transform infrared spectroscopies were used to characterize both complexes. The solid‐state molecular structures of both complexes were confirmed from single‐crystal X‐ray diffraction analysis. Structural analyses show that the Co(III) ion occupies the centre of a distorted octahedron in a complex cation: [LCo(tmtp)(H2O)]+ and [LCo(PPh3)(H2O)]+ for 1 and 2 , respectively. Phenoxazinone synthase activities of both complexes were screened. Kinetic studies and other experimental observations reveal that the reaction follows rate saturation kinetics and proceeds through the formation of a catalyst (complex)–substrate adduct. The turnover number (Kcat) of complex 2 is 54.07 h?1, exhibiting better catalytic activity compared to 1 (Kcat = 45.11 h?1).  相似文献   

14.
Hexacoordinated non‐heme iron complexes [FeII(L1)2](ClO4)2 ( 1 ) and [FeII(L2)2](PF6)2 ( 2 ) have been synthesized using ligands L1 = (E)‐2‐chloro‐6‐(2‐(pyridin‐2ylmethylene) hydrazinyl)pyridine and L2 = (E)‐2‐chloro‐6‐(2‐(1‐(pyridin‐2‐yl)ethylidene)hydrazinyl) pyridine]. These complexes are highly active non‐heme iron catalysts to catalyze the C (sp3)?H bonds of alkanes. These iron complexes have been characterized using ESI?MS analysis and molecular structures were determined by X‐ray crystallography. ESI ? MS analysis also helped to understand the generation of intermediate species like FeIII?OOH and FeIV=O. DFT and TD?DFT calculations revealed that the oxidation reactions were performed through high‐valent iron center and a probable reaction mechanism was proposed. These complexes were also utilized for the degradation of orange II and methylene blue dyes.  相似文献   

15.
The dinuclear Cu(II) complexes [Cu2(L1)2(mb)]?ClO4 ( 1 ) and [Cu2(L2)2(mb)]?ClO4 ( 2 ) (HL1 = 2‐[(2‐diethylaminoethylimino)methyl]phenol; HL2 = 2‐[1‐(2‐diethylaminoethylimino)propyl]phenol; mb = 4‐methylbenzoate) were synthesized and characterized using X‐ray crystal structure analysis and spectroscopic methods. Complexes 1 and 2 are dinuclear with distorted square pyramidal Cu (II) geometries, where Schiff base coordinates with tridentate (N,N,O) chelating mode and mb bridges two metal centres. Optimized structures and photophysical properties of ligands and complexes were calculated using density functional theory and time‐dependent density functional theory methods using B3LYP functional with 6‐31G (d,p) and LanL2MB basis sets. Interactions of the complexes with bovine serum albumin (BSA) and human serum albumin (HSA) were studied using UV–visible absorption and fluorescence spectroscopies and the calculated values of association constants (M?1) are 1.7 × 105 ( 1 –BSA), 5.7 × 105 ( 2 –BSA), 1.6 × 105 ( 1 –HSA) and 6.9 × 105 ( 2 –HSA). Interactions of the complexes with calf thymus DNA were also investigated and the binding affinities are 1.4 × 105 and 1.6 × 105 M?1 for 1 and 2 , respectively. Both complexes catalytically oxidize 3,5‐di‐tert‐butylcatechol to 3,5‐di‐tert‐butylbenzoquinone in the presence of molecular oxygen.  相似文献   

16.
Two new mononuclear iron(III) complexes, [Fe(HL)2](ClO4) · (H2O)1.75· CH3CN (1) and [Fe(HL)Cl2] · DMF (2) [H2L = 3‐(2‐phenol)‐5‐(pyridin‐2‐yl)‐1,2,4‐triazole] have been synthesized and characterized by X‐ray single‐crystal structure analysis. The single crystal X‐ray crystallographic studies reveal that the central iron atom has a distorted octahedral environment for 1 and a distorted square pyramidal geometry for 2. The DNA cleavage activity of the iron(III) complexes was measured, indicating that the six‐coordinated iron(III) (complex 1) was cleavage inactive and only five‐coordinated complex 2 effectively promoted the cleavage of plasmid DNA in the presence and/or absence of activating agents (peroxide oxygen) at physiological pH and temperature. The mechanism of plasmid DNA cleavage was also studied by adding standard radical scavengers. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
Characteristics of iron(III) complexes with malic acid in 0.55 mol L?1 NaCl were investigated by voltammetric techniques. Three iron(III)‐malate redox processes were detected in the pH range from 4.5 to 11: first one at ?0.11 V, second at ?0.35 V and third at ?0.60 V. First process was reversible, so stability constants of iron(III) and iron(II) complexes were calculated: log K1(FeIII(mal))=12.66±0.33, log β2(FeIII(mal)2)=15.21±0.25, log K1(FeII(mal))=2.25±0.36, and log β2(FeII(mal)2)=3.18±0.32. In the case of second and third reduction process, conditional cumulative stability constants of the involved complexes were determined using the competition method: log β(Fe(mal)2(OH)x)=15.28±0.10 and log β(Fe(mal)2(OH)y)=27.20±0.09.  相似文献   

18.
Tridentate Schiff bases (H2L1 or H2L2) were derived from condensation of acetylacetone and 2-aminophenol or 2-aminobenzoic acid. Binuclear square pyramidal complexes of the type [M2(L1)2]?·?nH2O (M?=?Fe–Cl, n?=?0; M?=?VO, n?=?1) were accessed from interaction of H2L1 with anhydrous FeCl3 and VOSO4?·?5H2O, respectively. A similar reaction with H2L2, however, produced mononuclear complexes [ML2(H2O) x ]?·?nH2O (M=Fe–Cl, x?=?0, n?=?0; M=VO, x?=?1, n?=?1). The compounds were characterized using elemental analysis, FT-IR, UV-Vis, and NMR (for ligand only), and mass spectroscopies and solution electrical conductivity studies. Magnetic susceptibility measurements suggest antiferromagnetic exchange in binuclear Fe(III) and VO(IV) complexes. Thermo gravimetric analysis (TGA) provided unambiguous evidence for the presence of coordinated as well as lattice water in [VOL2(H2O)]?·?H2O. Cyclic voltammetric studies showed well-defined redox processes corresponding to Fe(III)/Fe(II) and VO(V)/VO(IV). In vitro antimicrobial activities of the compounds were investigated against Klebsiella pneumoniae, Staphylococcus aureus, Pseudomonas aeroginosa, Escherichia coli, Bacillus subtilis, and Proteus vulgaris. H2L1 and its binuclear complexes exhibited pronounced activity against all the microorganisms tested.  相似文献   

19.
A series of new macrocyclic binuclear copper(II) complexes of the type [Cu2L1–5(ClO4)](ClO4) ( 1 – 5 ) were synthesized by template condensation between precursor compounds 2,6‐bis(4‐aminoethylpiperazin‐1‐ylmethyl)‐4‐substituted phenols and 2,6‐diformyl‐4‐substituted phenols. The synthesized precursors and complexes were characterized using regular physicochemical techniques. The rate constant values obtained for the hydrolysis of 4‐nitrophenylphosphate were in the range 1.83 × 10−2–4.19 × 102 min−1. Antioxidant studies against 2,2′‐diphenyl‐1‐picrylhydrazyl revealed the antioxidant potency of the synthesized complexes. Binding studies of the complexes with calf thymus DNA were conducted using electronic, viscometric and voltammetric techniques, and the obtained results suggested a non‐covalent groove mode of binding. The oxidative cleavage of pBR322 DNA in the presence of co‐reactant H2O2 and radical scavengers showed single strand scission and involvement of H2O2 radical in the cleavage process. Molecular docking studies were performed to insert complexes into the crystal structures of 1BNA and VEGFR kinase at active sites to determine the possible binding mode and predominant binding interactions. In vitro cytotoxicity of the complexes was tested against human epidermoid carcinoma cells (A431) by MTT assay, which revealed the effective anticancer activity of the complexes. Live cell and fluorescent imaging of A431 cells showed that the complexes induce cell death through apoptosis.  相似文献   

20.
Terbium(III) and dysprosium(III) nitrate complexes with variously substituted 2,6-diphenylpiperidin-4-ones (L1)-(L10) of general formula [Ln(L)(NO3)2(H2O)2]NO3 have been synthesized. These complexes have been characterized by analytical, spectral and thermal studies. Molar conductance data show that these complexes are 1:1 electrolytes. The presence of two coordinated water molecules is confirmed by thermal and infrared spectral studies. IR spectral data indicate that piperidin-4-ones, in spite of having two coordinating sites, are monodentate, coordinating only through ring nitrogen. The IR and conductance data reveal the presence of two bidentate and one ionic nitrate groups. The nephelauxetic ratio (β), covalency factor (b1/2) and Sinha’s parameter (δ) evaluated from electronic spectral data of dysprosium(III) complexes indicate a little covalency in metal-ligand bonding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号