首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Excitation functions for the 24Mg(p, γ)25Al capture reaction have been obtained for the beam energy range Ep = 0.2–2.3 MeV. The analysis of these data revealed the presence of the direct capture process to the low-lying states in 25Al at Ex(Jπ) = 0(52+), 452(12+), 945(32+), 2485(12+) and 3062 keV (32?). The presence of the weaker direct capture transitions is manifested through interference effects on the tails of the two broad resonances at Ep = 823 and 1623 keV. The deduced spectroscopic factors for these final states in 25Al are compared with the corresponding values from stripping data as well as model calculations. An astrophysical S-factor of S(0) ≈ 30 keV· b for this reaction has been obtained.  相似文献   

2.
The reactions 12C(d, α)10B, 18O(d, α)16N and34S(d, α)32P have been investigated at Ed = 52 MeV. Vector analyzing powers as large as ¦iT11¦=0.85 are observed. They exhibit patterns characteristic for final spins I = |L?1|, L or L + 1 and provide spin determinations at least for states of unique L-transfer. Local, zero-range DWBA calculations assuming deuteron-cluster pick-up reproduce qualitatively the observed effects. The method has been tested for states of known spin, and then has been applied to determine spins of states with stretched coupling in 16N: Jπ = 3+(3.96 MeV), 4?(6.17 MeV) and in 32P: Jπ = 5+(4.75 MeV). There is strong evidence for further 5+ states in 32P at 6.43, 7.96, 8.09 and 8.54 MeV.  相似文献   

3.
4.
Multiplicity distributions and 〈Eγ〉 have been measured for the 124Sn(40Ar, xn)164?xEr reaction at E(Ar) = 161, 182, 189, 209, and 236 MeV. The data at E(Ar) = 236 MeV indicate that pre-equilibrium neutrons are emitted. These data, together with other reactions leading to Er final systems, are discussed in terms of pre-equilibrium mechanisms.  相似文献   

5.
The vector analyzing power and differential cross section have been measured at a deuteron energy of 12.0 MeV for 118Sn(d, t) transitions to six states of 117Sn (Ex = 0.0, 0.16, 0.31, 0.71, 1.02 and 1.18 MeV), for 98Mo(d, t) transitions to eight states of 97Mo (Ex = 0.0, 0.68, 0.72, 0.89, 1.12, 1.28, 2.39 and 2.52 MeV), and for 118Sn(d, d)and98Mo(d, d). Deuteron optical model potentials were obtained from analysis of the elastic scattering measurements, and were used in a DWBA analysis of the (d, t) results. Comparison of the measurements and DWBA predictions for σ(θ) and for iT11(θ) allows unambiguous determination of tln and jn for all 118Sn(d, t) and most 98Mo(d, t) transitions. Differences in the triton energy relative to the Coulomb barrier cause marked qualitative differences in the measured cross sections and analyzing powers between 118Sn(d, t) and98Mo(d, t) transitions of the same ln and jn.  相似文献   

6.
Differential cross sections were measured for the reactions 9Be(α, α')9Be, 9Be(α, t)10B and9Be(α, 3He)10B at Eα = 65 MeV for angles ranging from θlab = 6° to 48°. Optical-model analysis was performed for elastic α-scattering from 9Be at Eα = 48, 65 and 104 MeV, and DWBA and CC calculations were done for the inelastic α-scattering at Eα = 65 MeV. DWBA calculations for the 9Be(α, 3He) reactions do not fit the transfer data so well and extracted spectroscopic factors are in disagreement with those of Cohen and Kurath and with values obtained from other reactions. Full CRC calculations assuming a band structure for the low-lying states of 10B and employing a modified set of Cohen and Kurath spectroscopic factors yield globally better fits both in shape and in absolute cross section for differential cross sections to low-lying states in 10B obtained in 9Be(α, t)10B at Eα = 65 MeV and9Be(3He, d)10B at Ed = 17 MeV. In general, strong coupled-channel effects mainly affecting the distorted waves are observed both in entrance and exit channels.  相似文献   

7.
Levels of 33S for Ex < 5 MeV have been studied with the 30Si(α, nγ)33S reaction at bombarding energies of Eα = 7.5 and 10.2 MeV. Neutron-gamma angular correlation experiments lead to three unambiguous spin and parity assignments: Jπ(3.83) = 52+, Jπ(4.048) = 92+and Jπ(4.09) = 72+. The measured branching and mixing ratios yield transition strengths for dipole and quadrupole transitions.  相似文献   

8.
Excitation functions and angular distributions of the reactions 7Li(p, α)α1 and 6(Li(d, α)α1 have b investigated for the excitation-energy region EX = 21?28 MeV in 8Be (α1 denotes the first excited state of the α-particle). pronounced resonant structure has been observed in both channels around EX = 24 MeV. It is excited simultaneously by odd and even angular momenta. The experimental results are discussed in the light of two models, the αα1 cluster model and the symplectic model which take into account the configuration interaction (core excitation) in different manners.  相似文献   

9.
The decay K+ → e+υγ has been investigated. For the structure-dependent part with positive γ-helicity (SD+) the branching ratio Γ(SD+)Γ(Kμ2) = (2.33 ± 0.42) × 10?5 is obtained from 51 ± 3 events observed in the kinematical region Ee ? 235 MeV, Eγ > 48 MeV and θeγ > 140°. For the corresponding part with negative γ-helicity we obtain an upper limit Γ(SD?)/Γ(SD+) < 11 (90% CL) from the sample of electrons with energies 220 MeV ? Ee < 230 MeV and with no γ in the backward direction. This upper limit implies that the ratio of structure-dependent axial vector amplitudes lies outside the region ?1.8 < aKυK < ?0.54.For the decay K+e+ννν the limit Γ(K+e+ννν)/Γ(Ke2) < 3.8 90% confidence level) was found.  相似文献   

10.
Closely spaced angular distributions have been measured for the 12C(α, α2)12C1(7.66 MeV) reaction between Eα = 17.39 and 20.5 MeV in a search for 8+ strength in 16O. No evidence of 8+ strength is found, but evidence is found for a narrow 7? resonance at 21.52 MeV excitation.  相似文献   

11.
The high-spin level structures of 152Dy and 153Dy were studied experimentally with 154, 155Gd(α xnγ) in-beam reactions, and for 152Dy also with 144, 146Nd(12C, xnγ) reactions. The experiments included measurements of singles γ-ray and conversion-electron spectra, γ-ray angular distributions and Eγ-t and Eγ-Eγ-t coincidences. A multiplicity filter set-up was used to study the feeding and decay of isomeric states in 152Dy. In 152Dy about twenty so far unknown levels were found, including two high-spin isomeric states with T12 ≈ 60 and ≈ 13 ns at excitation energies Ex ≈ 5.04 and 6.08 MeV, respectively. These states are compared with recent calculations on yrast traps. The level scheme of 153Dy contains 28 levels up to Ex = 4.1 MeV and Jπ = (372+). Band structures in both nuclei are discussed in comparison with other N = 86 and N = 87 isotones.  相似文献   

12.
Excitation functions at θ = 90° have been measured for 16O(3He, γ0?2, 3?5, 6)19Ne, 15N(3He, γ0, 1?4)18F, 14N(3He, γ0, 1,2,3)17F, and 20Ne(3He, γ0 + 1)23Mg, in the range E3He = 3–19 MeV. The first reaction has also been studied at θ = 40°. Excitation functions at 90° have also been measured for 40Ca(3He, γ0?2)43Ti for E3He = 4–17 MeV and 4He(3He, γ0 + 1)7Be for E3He = 19–26 MeV. Angular distributions have been measured for the first four reactions.For the most excitation functions, a broad peak is observed, several MeV wide, centred at about Ex≈ 20 MeV. Superimposed on this, in some cases, are narrower peaks, with width ≈ 1 MeV. Energies and widths have been extracted for all resonances.Cluster-model calculations have been carried out, using methods similar to those which have proved successful for low-lying states in A= 18–19 nuclei. No satisfactory correspondence with the present results was found. The shell model has been used to calculate Γ3He and Γγ for 1?ω excitations in the final nuclei. These generally show good agreement with the trends of the experimental data. The results are consistent with the excitation of the giant dipole resonance in 3He capture, but much more weakly than in proton capture.  相似文献   

13.
The differential cross section and polarization for neutrons scattered from 10B have been measured at En = 2.63 MeV (Ex = 13.85 MeV). The results of this experiment and other available neutron scattering data in the range 1 < En < 4 MeV are interpreted through a single-level R-matrix calculation over the region 12 < Ex < 15 MeV. Based on this analysis the most probable Jπ assignment for the 14.0 MeV level in 11B is 112+. The anomaly near Ex = 13.1 MeV can only be explained in terms of two overlapping levels having assignments of (52, 72)? and (32, 52, 72)+.  相似文献   

14.
The 20Ne(p, γ)21Na capture reaction has been studied in the energy range Ep = 0.37–2.10 MeV. Direct-capture transitions to the 332 (52+) and 2425 keV (12+) states have been found with spectroscopic factors of C2S(1d) = 0.77±0.13 and C2S(2s) = 0.90±0.12, respectively. The high-energy tail of the 2425 keV state, bound by 7 keV against proton decay, has also been observed in the above energy range as a subthreshold resonance. The excitation function for this tail is consistent with a single-level Breit-Wigner shape for a γ-width of Γγ = 0.31±0.07 eV at Ex = 2425 keV. The extrapolation of these data to stellar energies gives an astrophysical S-factor of S(0) = 3500 keV · b. Two new resonances at Ep = 384±5 and 417± 5 keV have been observed with strengths of ωγ = 0.11±0.02 and 0.06±0.01 meV, corresponding to the known states at Ex(Jπ) = 2798 (12?) and 2829 keV (presumably 92+), respectively. For the known Ep = 1830 keV resonance, a strength of ωγ = 1.0± 0.3 eV and a total width of Γ = 180± 15 keV were found. Branching ratios as well as transition strengths have been obtained for these three states. The Q-value for the 20Ne(p, γ)21Na reaction (Q = 2432.3 ± 0.5 keV) as well as excitation energies for many low-lying states in 21Na have been measured. No evidence was found for the existence of the state reported at Ex = 4308±4 keV.In the case of 22Ne(p, γ)23Na, direct-capture transitions to six final bound states have been observed revealing sizeable spectroscopic factors for these states. The astrophysical S-factor extrapolated from these data to stellar energies, is S(0) = 67 ± 12 keV · b.The astrophysical as well as the nuclear structure aspects of the present results are discussed.  相似文献   

15.
By γ-γ coincidence measurements following the 57Fe(12C, 2nγ) reaction at E12C = 40 MeV several new states above 1.5 MeV excitation energy in 67Ge have been established. Spin and parity assignments on the basis of the angular distribution, linear polarization and γ-ray yield function indicate very similar structures in 67, 69Ge. The positive-parity states can be followed up to the 172+ state at Ex = 3.07 MeV followed by a sequence of negative-parity high-spin states at nearly the same excitation energy relative to the 92+ single-particle state as in the neighbouring nucleus 69Ge where these states were found to have strong single-particle admixtures. A reinvestigation of the spin of the Ex = 2.75 MeV level in 69Ge resulting in a change of its spin from 152+to172+ and for all spins above, removed the discrepancy concerning the spin assignments of corresponding levels in 67, 69Ge. The excitation pattern of the Ge isotopes with 34 ≦ N ≦ 39 clearly indicate same structures probably due to the strong competition between collective and single-particle excitations along the whole chain similar to the results for the Zn isotopes.  相似文献   

16.
17.
Elastic and inelastic cross sections have been measured for 24 MeV neutrons incident on 26Mg using the time-of-flight technique. These cross sections and existing proton data were analyzed in terms of a Lane-consistent optical potential. Distorted-wave and coupled-channel calculations are presented. Deformation parameters for the first 2+ state (1.81 MeV) and the second 2+ state (2.94 MeV) derived from both the (n, n') and (p, p') data are used to obtain the ratio of neutron and proton transition matrix elements Mn(E2) and Mp(E2) for these states. Comparison of results for Mn(E2)Mp(E2) with those obtained from pion work, from electromagnetic (EM) rates and theoretical evaluations are presented.  相似文献   

18.
Excitation functions of the capture reaction 12C(p, γ0)13N have been obtained at θγ = 0° and 90° and Ep = 150–2500 keV. The results can be explained if a direct radiative capture process, E1(s and d → p), to the ground state in 13N is included in the analysis in addition to the two well-known resonances in this beam energy range [Ep = 457(12+) and 1699 (32?) keV]. The direct capture component is enhanced through interference effects with the two resonance amplitudes. From the observed direct capture cross section, a spectroscopic factor of C2S(l = 1) = 0.49 ± 0.15 has been deduced for the 12? ground state in 13N. Excitation functions for the reaction 12C(p,γ1p1)12C have been obtained at θγ = 0° and 90° and Ep = 610–2700 keV. Away from the 1699 keV resonance the capture γ-ray yield is dominated by the direct capture process E1 (p → s) to the 2366 (12+) keV unbound state. Above Ep = 1 MeV, the observed excitation functions are well reproduced by the direct capture theory to unbound states (bremsstrahlung theory). Below Ep = 1 MeV, i.e., Ep → 457 keV, the theory diverges in contrast to observation. This discrepancy is well known in bremsstrahlung theory as the “infrared problem”. From the observed direct capture cross sections at Ep ? 1 MeV, a spectroscopic factor of C2S(l = 0) = 1.02 ± 0.15 has been found for the 2366 (12+) keV unbound state. A search for direct capture transitions to the 3512 (32?)and 3547 (52+) keV unbound states resulted in upper limits of C2S(l = 1) ≦ 0.5 and C2S(l = 2) ? 1.0, respectively. The results are compared with available stripping data as well as shell-model calculations. The astrophysical aspect of the 12C(p, γ0)13N reaction also is discussed.  相似文献   

19.
The γ-decay of 60 and the strengths of 51 26Mg(p, γ)27Al resonances were studied for Ep < 2.20 MeV. The energies of 32 and the γ-decay of 54 bound levels were determined. Spin and parity assignments Jπ = 52+, 52?, 32?, 32+, 32+and32+ were made to the bound states at Ex = 4.81, 5.44, 6.61, 6.78, 7.68 and 7.86 MeV, respectively. Spin assignments J = 52and 32 were made to the bound levels at Einx = 5.55 and 6.08 MeV, respectively. For other levels spin and parity limitations were set. Lifetimes or lifetime upper limits of 19 bound levels were measured by means of the DSA technique. The spins and/or parities of 15 resonances were unambiguously determined from γ-ray angular distributions and strengths.  相似文献   

20.
For the first time, the reactions π+p→K++ and K?p→π?+ have been studied in the same apparatus. This has been done at an adequately high momentum (10.1 GeV/c) to allow a check of the prediction of exchange degeneracy, that the differential cross sections should be converging at high energy. We have measured the cross section for momentum transfers t between tmin and t = ?0.3 (GeV/c)2. We find that for both reactions the differential cross section shows an exponential fall, with no deviations right in to t =tmin (where some other experiments have shown a dip in the cross section). Furthermore, we find the magnitude of the differential cross sections to be closely similar at t = 0, with a ratio
R=(dσdt)t=0(K?p→π?+)(dσdt)t=0+pK++
However, the slope for the positive reaction is about 19% steeper than that for the negative reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号