首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Polymer hydrogels and small‐molecule‐based (SMB) supramolecular hydrogels have been widely explored. But oligomeric hydrogels have remained a challenge because synthetic difficulties of the oligomers and control of their amphiphilicities. Reported herein is the rational design of two precursors Cys(SEt)‐Lys‐CBT ( 1 ) and (Cys‐Lys‐CBT)2 ( 2 ) (CBT=2‐cyano‐6‐aminobenzothiazole) and the use of a biocompatible condensation to prepare oligomeric hydrogels. Glutathione reduction of 1 or 2 yields the same gelator Cys‐Lys‐CBT ( 3 ) which condenses with each other to yield amphiphilic cyclic oligomers. The oligomers instantly self‐assemble into nanofibers and form oligomeric hydrogels with similar mechanic properties. Chemical analyses indicated that the major condensation product in both two hydrogels is a cyclic dimer. Considering its biocompatibility, optimal mechanical strength, and biodegradability, we believe that our oligomeric hydrogel might be useful for long‐term drug delivery in the future.  相似文献   

2.
The synthesis of a benzenethiol‐derivatized porphyrin for flat‐lying self‐assembly on gold substrates is described. Acetyl protected thiol is not stable enough in Pd‐catalyzed reactions. While acrylate derivatives protected thiol group shows good tolerance in Pd‐catalyzed borylations and Suzuki‐Miyaura coupling reactions and no catalyst poisoning was observed.  相似文献   

3.
A series of amphiphilic poly(L ‐leucine)‐block‐poly(ethylene glycol)‐block‐poly(L ‐leucine) (PLL‐PEG‐PLL) hybrid triblock copolymers have been synthesized. All the blocks in this system have good biocompatibility and low toxicity. The PLL‐PEG‐PLL copolymers could self‐assemble into micelles with PLL blocks as the hydrophobic core and PEG blocks as the hydrophilic shell, which were characterized by FT‐IR, 1H NMR, and transmission electron microscopy analysis. The critical micellar concentration of the copolymer was 95.0 mg · L−1. The circular dichroism spectrum shows that the PLL segments adopt a unique α‐helical conformation, which is found to play an important role in controlling the drug release rate. The drug release could be effectively sustained by encapsulation in the micelles. The copolymers may have potential applications in drug delivery.

  相似文献   


4.
The preparation of 3D hierarchical nanostructures by a simple and versatile strategy of self‐assembly of dopamine (DA) and phosphotungstic acid (PTA) is described. The size and morphology of the hierarchical nanostructures could be simply controlled by varying the ratio of the two components, their concentrations, and the pH of the initial Tris‐HCl solution. The self‐assembly of the flowerlike microspheres has been found to involve a two‐stage growth process. Moreover, use of the hierarchical nanostructures as a possible carrier for an anticancer drug in chemotherapy has been explored. The nanostructures showed an intriguing pH‐dependent release behavior, making them promising for applications in biomedical science.  相似文献   

5.
《中国化学》2017,35(7):1057-1062
Many materials as immune adjuvant are researched to help raise immnogenicity of subunit vaccines. Among them, peptide‐based hydrogels are gradually coming into notice because of their application in drugs delivery, cancer cell inhibition, vaccine adjuvants and detection of important analytes. In this work, we introduced a novel aromatic capping group based on indole to construct short peptide‐based supramolecular hydrogelators Indol‐GFFY and Indol‐GD FD FD Y and demonstrated their potential applications as vaccine adjuvants.  相似文献   

6.
Terpyridine‐functionalized graphene oxides were prepared for self‐assembly into 3D architectures with various metal ions (e.g., Fe, Ru). The resulting electrode materials showed significantly improved electroactivities for efficient energy conversion and storage. They showed promise for application in the oxygen reduction reaction (ORR), photocurrent generation, and supercapacitance.  相似文献   

7.
Multicomponent systems for self‐assembled molecular gels provide huge opportunities to generate collective or new functions that are not inherent in individual single‐component gels. However, gelation tends to require careful and complicated procedures, because, among a myriad of kinetically trapped structures related to the degree of mixing of multiple components over a wide range of scales, from molecular level to macroscopic scale, a limited number of structures that exhibit the desired function need to be constructed. This study presents a simple method for the construction of double‐network (DN) hydrogels with improved stiffness composed of crystalline cellulose oligomers and gelatin. The pH‐triggered self‐assembly of cellulose oligomers leads to the formation of robust networks composed of crystalline nanofibers in the presence of dissolved gelatin, followed by cooling to allow for the formation of soft gelatin networks. The resultant DN hydrogels exhibit improved stiffness; the improvement in gel stiffness with double networking is comparable to that of previously reported DN hydrogels produced via a time‐consuming enzymatic reaction.  相似文献   

8.
9.
Hierarchical self‐assembly of transient composite hydrogels is demonstrated through a two‐step, orthogonal strategy using nanoparticle tectons interconnected through metal–ligand coordination complexes. The resulting materials are highly tunable with moduli and viscosities spanning many orders of magnitude, and show promising self‐healing properties, while maintaining complete optical transparency.

  相似文献   


10.
Simple construction and manipulation of low‐molecular‐weight supramolecular nanogels, based on the introduction of multiple hydrogen bonding interactions, with the desired physical properties to achieve effective and safe delivery of drugs for cancer therapy remain highly challenging. Herein, a novel supramolecular oligomer cytosine (Cy)‐polypropylene glycol containing self‐complementary multiple hydrogen‐bonded Cy moieties is developed, which undergoes spontaneous self‐assembly to form nanosized particles in an aqueous environment. Phase transitions and scattering studies confirm that the supramolecular nanogels can be readily tailored to obtain the desired phase‐transition temperature and temperature‐induced release of the anticancer drug doxorubicin (DOX). The resulting nanogels exhibit an extremely high load carrying capacity (up to 24.8%) and drug‐entrapment stability, making the loading processes highly efficient. Importantly, in vitro cytotoxicity assays indicate that DOX‐loaded nanogels possess excellent biosafety for drug delivery applications under physiological conditions. When the environmental temperature is increased to 40 °C, DOX‐loaded nanogels trigger rapid DOX release and exert cytotoxic effects, significantly reducing the dose required compared to free DOX. Given its simplicity, low cost, high reliability, and efficiency, this newly developed temperature‐responsive nanocarrier has highly promising potential for controlled release drug delivery systems.

  相似文献   


11.
A new family of isomeric tetrapeptides containing aromatic and polar amino acid residues that are able to form molecular hydrogels following a smooth change in pH is described. The hydrogels have been studied by spectroscopic and microscopic techniques showing that the peptide primary sequence has an enormous influence on the self‐assembly process. In particular, the formation of extended hydrophobic regions and the appearance of π‐stacking interactions have been revealed as the driving forces for aggregation. Moreover, the interaction of these compounds with amyloid peptidic fragment Aβ1‐40 has been studied and some of them have been shown to act as templates for the aggregation of this peptide into non‐β‐sheet fibrillar structures. These compounds could potentially be used for the capture of toxic, soluble amyloid oligomers.  相似文献   

12.
吴佳  黄力  刘坚  明明  李庆国  丁建东 《中国化学》2005,23(3):330-333
This paper reports, for the first time, that Archaerhodopsin-4 (AR4) could be reconstituted into phospholipid liposomes by self-assembly. AR4 is a new membrane protein isolated from halobacteria H.sp. xz515 in a salt lake of Tibet, China. This is a bacteriorhodopsin (bR) like protein, function as a light-driven proton pump. Experimental measurements verified that similar to bR, AR not only remains its biological activity in pmteoliposome, but also keeps a preferred orientation in self-assembly.  相似文献   

13.
Photo‐crosslinking and self‐healing have received considerable attention for the design of intelligent materials. A novel photostimulated, self‐healing, and cytocompatible hydrogel system is reported. A coumarin methacrylate crosslinker is synthesized to modify the polyacrylamide‐based hydrogels. With the [2+2] cyclo‐addition of coumarin moieties, the hydrogels exhibit excellent self‐healing capacity when they are exposed to light with wavelengths at 280 and 365 nm, respectively. To enhance cell compatibility, a poly (amidoamine) crosslinker is also synthesized. Variations in light exposure times and irradiation wavelengths are found to alter the self‐healing property of the hydrogels. The hydrogels are shown to induce a regular cellular pattern. The hydrogels are used to regulate bone marrow stromal cells differentiation. The relative mRNA expressions are recorded to monitor the osteogenic differentiation of the cells.

  相似文献   


14.
15.
A photocleavable terpolymer hydrogel cross‐linked with o‐nitrobenzyl derivative cross‐linker is shown to be capable of self‐shaping without losing its physical integrity and robustness due to spontaneous asymmetric swelling of network caused by UV‐light‐induced gradient cleavage of chemical cross‐linkages. The continuum model and finite element method are used to elucidate the curling mechanism underlying. Remarkably, based on the self‐changing principle, the photosensitive hydrogels can be developed as photoprinting soft and wet platforms onto which specific 3D characters and images are faithfully duplicated in macro/microscale without contact by UV light irradiation under the cover of customized photomasks. Importantly, a quick response (QR) code is accurately printed on the photoactive hydrogel for the first time. Scanning QR code with a smartphone can quickly connect to a web page. This photoactive hydrogel is promising to be a new printing or recording material.

  相似文献   


16.
The self‐assembly of a metallo‐supramolecular PS‐[Ru]‐PEO block copolymer, where ‐[Ru]‐ is a bis‐2,2′:6′,2″‐terpyridine‐ruthenium(II) complex, in thin films was investigated. Metallo‐supramolecular copolymers exhibit a different behavior as compared to their covalent counterparts. The presence of the charged complex at the junction of the two blocks has a strong impact on the self‐assembly, effecting the orientation of the cylinders and ordering process. Poly(ethylene oxide) cylinders oriented normal to the film surface are obtained directly regardless of the experimental conditions over a wide range of thicknesses. Exposure to polar solvent vapors can be used to improve the lateral ordering of the cylindrical microdomains. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4719–4724, 2008  相似文献   

17.
A series of nanoparticles is prepared via layer‐by‐layer assembly of oppositely charged, synthetic biocompatible polyamidoamine polymers as potential carriers. Particle size, surface charge and internal chain mobility are quantified as a function of the polymer type and number of layers. The effect of addition of surfactant is examined to simulate the effects of nanoparticle dissolution. The cyctotoxicity of these particles (in epithelia and murine cell lines) are orders of magnitude lower than polyethyleneimine controls. Stable nanoparticles may be prepared from mixtures of strongly, oppositely charged polymers, but less successfully from weakly charged polymers, and, given their acceptable toxicity characteristics, such modularly designed constructs show promise for drug and gene delivery.

  相似文献   


18.
19.
For the first time the possibility to obtain nanostructures by self‐assembly of chitosan polyampholytic derivative was demonstrated. The self‐assembly of N‐carboxyethylchitosan (CECh) took place only near its isoelectric point (pH 5.0–5.6). Out of the pH range 5.0–5.6, CECh aqueous solutions behaved as real solutions. Dynamic light scattering and atomic force microscopy analyses revealed that spherically shaped or rod/worm‐like nanosized assemblies were formed depending on the polymer molar mass, pH value, and polymer concentration. CECh of two different molar masses was studied in concentrations ranging from 0.01 to 0.1 mg/mL. The structures from CECh of weight‐average molar mass (Mw ) 4.5 × 103 g/mol were spherical regardless the pH and polymer concentration. In contrast, CECh of high molar mass (HMMCECh, Mw = 6.7 × 105 g/mol) formed self‐assemblies with spherical shape only at pH 5.0 and 5.6. At pH 5.2 spherical nanoparticles were obtained only at polymer concentration 0.01 mg/mL. The mean hydrodynamic diameter (Dh) of the obtained nanoparticles was in the range from 30 to 980 nm. On increasing the concentration, aggregation of the nanoparticles appeared, and at HMMCECh concentration 0.1 mg/mL, rod/worm‐like structures were obtained. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 6712–6721, 2008  相似文献   

20.
We present herein a short tripeptide sequence (Lys–Phe–Gly or KFG) that is situated in the juxtamembrane region of the tyrosine kinase nerve growth factor (Trk NGF) receptors. KFG self‐assembles in water and shows a reversible and concentration‐dependent switching of nanostructures from nanospheres (vesicles) to nanotubes, as evidenced by dynamic light scattering, transmission electron microscopy, and atomic force microscopy. The morphology change was associated with a transition in the secondary structure. The tripeptide vesicles have inner aqueous compartments and are stable at pH 7.4 but rupture rapidly at pH≈6. The pH‐sensitive response of the vesicles was exploited for the delivery of a chemotherapeutic anticancer drug, doxorubicin, which resulted in enhanced cytotoxicity for both drug‐sensitive and drug‐resistant cells. Efficient intracellular release of the drug was confirmed by fluorescence‐activated cell sorting analysis, fluorescence microscopy, and confocal microscopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号