首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present first-principles pseudopotential plane-wave calculations to explore the effects of alloying of non conventional III–V compound GaN with bismuth. We found a highly nonlinear reduction of the energy gap of GaN for small Bi composition. Consequently the optical band gap bowing is found extremely important and composition dependent. The stronger contribution is due principally to structural and, to less extent, to charge transfer effects. Moreover, because of strong relativistic effects caused by bismuth, we found a giant bowing for the spin–orbit splitting energy of valence band, by far the largest of any III–V ternary alloys.  相似文献   

2.
The zincblende ternary alloys Tl_xGa_(1-x) As(0 x 1) are studied by numerical analysis based on the plane wave pseudopotential method within the density functional theory and the local density approximation. To model the alloys,16-atom supercells with the 2 × 2 × 2 dimensions are used and the dependency of the lattice parameter, bulk modulus,electronic structure, energy band gap, and optical bowing on the concentration x are analyzed. The results indicate that the ternary Tl_xGa_(1-x) As alloys have an average band gap bowing parameter of 4.48 eV for semiconductor alloys and 2.412 eV for semimetals. It is found that the band gap bowing strongly depends on composition and alloying a small Tl content with GaAs produces important modifications in the band structures of the alloys.  相似文献   

3.
In the present computational study, we have explored the structural, electronic and optical properties of ZnTe, CdTe and HgTe binary compounds and their ternary alloys ZnxCd1-xTe, ZnxHg1-xTe and CdxHg1-xTe as well as their ordered quaternary ZnxCdyHg1-x-yTe alloys using the full potential linearized augmented plane wave (FP-LAPW) method based on the density functional theory. We have numerically estimated the total energies, the lattice parameters, the bulk moduli and their first pressure derivative using the generalized gradient approximation (GGA). The band structure is computed using the modified Becke-Johnson (TB-mBJ) approximation. Results of our study show a nonlinear dependence of the composition on the lattice constant, bulk modulus and band gap for the binary and ternary compounds as well as for the quaternary alloys. Additionally, the dielectric function, the refractive index and the loss energy were also reported. The pressure effect on the band gap energy and optical properties were also investigated and reported. Our results are in good agreement with experimental values and theoretical data available in the literature.  相似文献   

4.
First-principles calculations of the electronic and optical properties of the bulkIn x Ga1 ? x N alloys aresimulated within the framework of full-potential linearized augmented plane-wave (FP-LAPW)method. To this end, a sufficiently adequate approach, namely modified Becke-Johnson(mBJLDA) exchange correlation potential is employed for calculating the energy band gapand optical absorption of InGaN-based solar cells systems. The quantities such as theenergy gap, density of states, imaginary part of dielectric function, refractive index andabsorption coefficient are determined for the bulkIn x Ga1?x N alloys, in thecomposition range from x = 0 to x = 1. It is found thatthe indium composition robustly controls the variation of band gap. From the examinationof the density of states and optical absorption ofIn x Ga1?x N ternary alloys,the energy gaps are significantly reduced for largest In concentration. The computed bandgaps vary nonlinearly with the composition x. It is also surmised thatthe significant variation in the band gaps elaborated via the experimental crystallinegrowth process, is originated by altering the In composition. Interestingly, it isworthwhile to perform InGaN solar cells alloys with improved efficiencies, because oftheir entire energy gap variation from 0.7 to 3.3 eV.  相似文献   

5.
葛翠环  李洪来  朱小莉  潘安练 《中国物理 B》2017,26(3):34208-034208
Atomically thin two-dimensional(2D) layered materials have potential applications in nanoelectronics, nanophotonics, and integrated optoelectronics. Band gap engineering of these 2D semiconductors is critical for their broad applications in high-performance integrated devices, such as broad-band photodetectors, multi-color light emitting diodes(LEDs), and high-efficiency photovoltaic devices. In this review, we will summarize the recent progress on the controlled growth of composition modulated atomically thin 2D semiconductor alloys with band gaps tuned in a wide range, as well as their induced applications in broadly tunable optoelectronic components. The band gap engineered 2D semiconductors could open up an exciting opportunity for probing their fundamental physical properties in 2D systems and may find diverse applications in functional electronic/optoelectronic devices.  相似文献   

6.
The thermally excited luminescence of undoped semiconductors and semiconductor nanocrystals near the band gap is explored by a simple and unconventional experimental technique. Luminescence spectra are obtained at ambient conditions after slightly heating the samples to approximately 100 °C without using any additional electronic or optical means of excitation. In our investigations, bulk GaAs, bulk InP and semiconductor doped glasses are studied. We show that absorption properties and band gap positions obtained directly from emission spectra not only correspond well to those obtained from transmission measurements, but also yield additional information about the role of defects giving rise to emission from within the band gap.  相似文献   

7.
Mg掺杂ZnO形成的固溶体Zn1-xMgxO(ZMO)(0 ≤ x ≤ 0.25)是一种带隙较宽、电子学性质可调控的半导体材料,在薄膜太阳电池及光电设备的透明电极等方面具有重要的应用价值。基于密度泛函理论下的第一性原理超软赝势方法,采用GGA+U计算了ZMO的电子结构和光学性质。计算结果表明,随着x值的增加,ZMO的禁带宽度由x=0时的3.32 eV增加到x=0.25时的3.78 eV;光吸收边及反射谱和能量损失谱均发生明显蓝移,峰值存在于紫外光区。计算结果与实验结论相符合。  相似文献   

8.
The structural, electronic and optical properties of GaP, BP binary compounds and their ternary alloys Ga1?xBxP (x=0.25, 0.5 and 0.75) have been studied by full-potential linearized augmented plane wave (FP-LAPW) method within the framework of density functional theory (DFT) as implemented in WIEN2k package. Local density approximation (LDA) and generalized gradient approximation (GGA) as proposed by Perdew–Burke–Ernzerhof (PBE), Wu–Cohen (WC) and PBE for solid (PBESol) were used for treatment of exchange-correlation effect in calculations. Additionally, the Tran–Blaha modified Becke–Johnson (mBJ) potential was also employed for electronic and optical calculations due to that it gives very accurate band gap of solids. As B concentration increases, the lattice constant reduces and the energy band gap firstly decreases for small composition x and then it shows increasing trend until pure BP. Our results show that the indirect–direct band gap transition can be reached from x=0.33. The linear optical properties, such as reflectivity, absorption coefficient, refractive index and optical conductivity of binary compounds and ternary alloys were derived from their calculated complex dielectric function in wide energy range up to 30 eV, and the alloying effect on these properties was also analyzed in detail.  相似文献   

9.
The structural and electronic properties of cubic GaN x As1−x with N-concentration varying between 0.0 and 1.0 with step of 0.25 were investigated using the full potential–linearized augmented plane wave (FP-LAPW) method. We have used the local density approximation (LDA) and the generalized gradient approximation (GGA) for the exchange and correlation potential. In addition the Engel-Vosko generalized gradient approximation (EVGGA) was used for the band-structure calculations. The structural properties of the binary and ternary alloys were investigated. The electronic band structure, total and partial density of states as well as the electron charge density were determined for both the binary and their related ternary alloys. The energy gap of the alloys decreases when we move from x=0.0 to 0.25; then it increases by a factor of about 1.8 when we move from 0.25 to 0.5, 0.75 and 1.0 using EVGGA. For both LDA and GGA moving from x=0.0 to 0.25 causes the band gap to close, showing the metallic nature of the GaN0.25As0.75 alloy. When the composition of N moves through x=0.25, 0.5, 0.75 and 1, the band gap increases.  相似文献   

10.
Using a first-principles band-structure method and a special quasirandom structure (SQS) approach, we systematically calculate the band gap bowing parameters and p-type doping properties of (Zn, Mg, Be)O related random ternary and quaternary alloys. We show that the bowing parameters for ZnBeO and MgBeO alloys are large and dependent on composition. This is due to the size difference and chemical mismatch between Be and Zn(Mg) atoms. We also demonstrate that adding a small amount of Be into MgO reduces the band gap indicating that the bowing parameter is larger than the band-gap difference. We select an ideal N atom with lower p atomic energy level as dopant to perform p-type doping of ZnBeO and ZnMgBeO alloys. For N doped in ZnBeO alloy, we show that the acceptor transition energies become shallower as the number of the nearest neighbor Be atoms increases. This is thought to be because of the reduction of p-d repulsion. The NO acceptor transition energies are deep in the ZnMgBeO quaternary alloy lattice-matched to GaN substrate due to the lower valence band maximum. These decrease slightly as there are more nearest neighbor Mg atoms surrounding the N dopant. The important natural valence band alignment between ZnO, MgO, BeO, ZnBeO, and ZnMgBeO quaternary alloy is also investigated.  相似文献   

11.
Results of density-functional calculations for indium thiospinel semiconductors substituted at octahedral sites with isolated transition metals (M=Ti,V) show an isolated partially filled narrow band containing three t2g-type states per M atom inside the usual semiconductor band gap. Thanks to this electronic structure feature, these materials will allow the absorption of photons with energy below the band gap, in addition to the normal light absorption of a semiconductor. To our knowledge, we demonstrate for the first time the formation of an isolated intermediate electronic band structure through M substitution at octahedral sites in a semiconductor, leading to an enhancement of the absorption coefficient in both infrared and visible ranges of the solar spectrum. This electronic structure feature could be applied for developing a new third-generation photovoltaic cell.  相似文献   

12.
The structural, electronic, and optical properties of binary ZnO, ZnSe compounds, and their ternary ZnO 1-x Se x alloys are computed using the accurate full potential linearized augmented plane wave plus local orbital (FP-LAPW + lo) method in the rocksalt (B1) and zincblende (B3) crystallographic phases. The electronic band structures, fundamental energy band gaps, and densities of states for ZnO 1-x Se x are evaluated in the range 0 ≤ x ≤ 1 using Wu-Cohen (WC) generalized gradient approximation (GGA) for the exchange-correlation potential. Our calculated results of lattice parameters and bulk modulus reveal a nonlinear variation for pseudo-binary and their ternary alloys in both phases and show a considerable deviation from Vegard's law. It is observed that the predicted lattice parameter and bulk modulus are in good agreement with the available experimental and theoretical data. We establish that the composition dependence of band gap is semi-metallic in B1 phase, while a direct band gap is observed in B3 phase. The calculated density of states is described by taking into account the contribution of Zn 3d, O2p, and Se 4s, and the optical properties are studied in terms of dielectric functions, refractive index, reflectivity, and energy loss function for the B3 phase and are compared with the available experimental data.  相似文献   

13.
We study theoretically the electron energy spectrum and the photoemission from III–V, ternary and quaternary materials in the presence of light waves, whose unperturbed energy band structures are defined by the three-band model of Kane. The band gap of semiconductors increases as a consequence of incident light waves and we have suggested two new experimental methods of determining the band gap of semiconductors in the presence of photoexcitations. The solution of the Boltzmann transport equation on the basis of this newly formulated electron dispersion law will introduce new physical ideas and experimental findings in the presence of external photoexcitation. It has been found taking n-InAs, n-InSb, n-Hg1−xCdxTe and n-In1−xGaxAsyP1−y lattice matched to InP, as examples that the photoemission increases with the increase in electron concentration and decreases in increasing intensity, wavelength and alloy composition, respectively, in various manners. The numerical values of the photoemission in the presence of light waves is less than that of the same for unperturbed three- and two-band models of Kane together with parabolic energy bands for all types of external variables. The strong dependence of the photoemission on the light intensity reflects the direct signature of light waves on the dispersion relation of the conduction electrons, which is in contrast when compared with the corresponding bulk specimens for the unperturbed band models. The rate of change is totally band structure dependent and is significantly influenced by the presence of the different energy band constants. The well-known result of the photoemission from non-degenerate wide gap materials has been obtained as a special case of the present analysis under certain limiting conditions and this compatibility is the indirect test of our generalized formalism. Besides, we have suggested six important applications of our results in this context.  相似文献   

14.
逯瑶  王培吉  张昌文  蒋雷  张国莲  宋朋 《物理学报》2011,60(6):63103-063103
采用全电势线性缀加平面波(FP-LAPW)的方法,基于密度泛函理论第一性原理结合广义梯度近似(GGA),运用Wien2k软件计算了In, N两种元素共掺杂SnO2材料的电子态密度和光学性质. 研究表明,共掺杂结构在自旋向下和向上两方向上都出现细的局域能级,两者态密度分布不对称;带隙内自旋向下方向上产生局域能级,共掺化合物表现出半金属性;能带结构显示两种共掺杂化合物仍为直接禁带半导体,价带顶随着N浓度的增加发生向低能方向移动,带隙明显增宽;共掺下的介电函数虚部主介电峰只在8.58 eV 关键词: 电子结构 态密度 能带结构 光学性质  相似文献   

15.
王顺  杜宇雷  廖文和 《中国物理 B》2017,26(1):17806-017806
Using the density functional theory, we have investigated the electronic and optical properties of two-dimensional Sc_2C monolayer with OH, F, or O chemical groups. The electronic structures reveal that the functionalized Sc_2C monolayers are semiconductors with a band gap of 0.44–1.55 eV. The band gap dependent optical parameters, like dielectric function, absorption coefficients, reflectivity, loss function, and refraction index were also calculated for photon energy up to 20 eV. At the low-energy region, each optical parameter shifts to red, and the peak increases obviously with the increase of the energy gap. Consequently, Sc_2C monolayer with a tunable band gap by changing the type of surface chemical groups is a promising 2D material for optoelectronic devices.  相似文献   

16.
Silica based glasses are used as nuclear shielding materials. The effect of radiation on these glasses varies as per the constituents used in these glasses. Glasses of different composition of SiO2-Na2OMgO-Al2O3 were made by melt casting techniques. These glasses were irradiated with neutrons of different fluences. Optical absorption measurements of neutron-irradiated silica based glasses were performed at room temperature (RT) to detect and characterize the induced radiation damage in these materials. The absorption band found for neutron-irradiated glasses are induced by hole type color centers related to non-bridging oxygen ions (NBO) located in different surroundings of glass matrix. Decrease in the transmittance indicates the formation of color-center defects. Values for band gap energy and the width of the energy tail above the mobility gap have been measured before and after irradiation. The band gap energy has been found to decrease with increasing fluence while the Urbach energy shows an increase. The effects of the composition of the glasses on these parameters have been discussed in detail in this paper.   相似文献   

17.
A theoretical study of the structural, electronic, optical and thermodynamic properties of NaxRb1?xH and NaxK1?xH ternary alloys in NaCl phase has been carried out using the first-principles method. We modeled the alloys at some selected compositions with ordered structures described in terms of periodically repeated supercells. The dependences on the composition of the lattice constant, band gap, dielectric constant, refractive index, Debye temperature, mixing entropy and heat capacities were analyzed for x=0, 0.25, 0.50, 0.75 and 1. The lattice constants of NaxRb1?xH and NaxK1?xH exhibit a marginal deviation from Vegard's law. A strong deviation of the bulk modulus from linear concentration dependence was observed for both alloys. We found that the composition dependence of the energy band gap is highly non linear and the large bowing coefficient for NaxRb1?xH is sensitive to the composition. Using the approach of Zunger and co-workers, the microscopic origins of the gap bowing were detailed and explained. The thermodynamic stability of these alloys was investigated by calculating the phase diagram. The thermal effect on some macroscopic properties was investigated using the quasi-harmonic Debye model. There is a good agreement between our results and the available experimental data for the binary compounds, which is a support for those of the ternary alloys that we report for the first time.  相似文献   

18.
In this paper, we investigated the structural, electronic and optical properties of InAs, InN and InP binary compounds and their related ternary and quaternary alloys by using the full potential linearized augmented plane wave(FP-LAPW)method based on density functional theory(DFT). The total energies, the lattice parameters, and the bulk modulus and its first pressure derivative were calculated using different exchange correlation approximations. The local density approach(LDA) and Tran–Blaha modified Becke–Johnson(TB-m BJ) approximations were used to calculate the band structure.Nonlinear variations of the lattice parameters, the bulk modulus and the band gap with compositions x and y are found.Furthermore, the optical properties and the dielectric function, refractive index and loss energy were computed. Our results are in good agreement with the validated experimental and theoretical data found in the literature.  相似文献   

19.
徐向阳  柴常春  樊庆扬  杨银堂 《中国物理 B》2017,26(4):46101-046101
We study structural,mechanical,and electronic properties of C_(20),Si_(20) and their alloys(C_(16)Si_4,C_(12)Si_8,C_8Si_(12),and C_4Si_(16)) in C2/m structure by using density functional theory(DFT) based on first-principles calculations.The obtained elastic constants and the phonon spectra reveal mechanical and dynamic stability.The calculated formation enthalpy shows that the C-Si alloys might exist at a specified high temperature scale.The ratio of BIG and Poisson's ratio indicate that these C-Si alloys in C2/m-20 structure are all brittle.The elastic anisotropic properties derived by bulk modulus and shear modulus show slight anisotropy.In addition,the band structures and density of states are also depicted,which reveal that C_(20),C_(16)Si_4,and Si_(20) are indirect band gap semiconductors,while C_8Si_(12) and C_4Si_(16) are semi-metallic alloys.Notably,a direct band gap semiconductor(C_(12)Si_8) is obtained by doping two indirect band gap semiconductors(C_(20) and Si_(20)).  相似文献   

20.
In this work, the full-potential linearized augmented plane wave (FP-LAPW) method was used to calculate the structural, electronic, thermal and thermodynamic properties of BaS and CaS compounds and their ternary mixtures, Ba1?xCaxS. The local-density approximation (LDA), the Wu-Cohen generalized gradient approximation (WC-GGA) and the Perdew-Burke-Ernzerhof generalized gradient approximation (PBE-GGA) were used as the exchange-correlation potential. Moreover, the modified Becke–Johnson approximation was also used for the band structure calculations. We examined the composition effect on the lattice constants, bulk modulus and band gap. The microscopic origins of the band gap bowing were characterized in detail using the approach of Zunger and colleagues. Pressure and temperature effects on the lattice parameter, heat capacity, Debye temperature, Grüneisen parameter, and thermal expansion coefficient were predicted using the quasi-harmonic Debye model. The thermodynamic stability of these alloys was investigated by calculating the excess enthalpy of mixing, ?Hm, and the phase diagram. It was shown that these alloys are stable at high temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号