首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Using replica integral equations in the reference hypernetted-chain (RHNC) approximation we calculate vapor-liquid spinodals, chemical potentials, and compressibilities of fluids with angle-averaged dipolar interactions adsorbed to various disordered porous media. Comparison with previous RHNC results for systems with true angle-dependent Stockmayer (dipolar plus Lennard-Jones) interactions indicate that, for a dilute hard sphere matrix, the angle-averaged fluid-fluid (ff) potential is a reasonable alternative for reduced fluid dipole moments m( *2)=mu(2)/(epsilon(0)sigma(3))< or =2.0. This range is comparable to that estimated in bulk fluids, for which RHNC results are presented as well. Finally, results for weakly polar matrices suggest that angle-averaged fluid-matrix (fm) interactions can reproduce main features observed for true dipolar (fm) interactions such as the shift of the vapor-liquid spinodals towards lower temperatures and higher densities. However, the effective attraction induced by dipolar (fm) interaction is underestimated rather than overestimated as in the case of angle-averaged ff interactions.  相似文献   

2.
We use the density functional theory of statistical mechanics in a square gradient approximation to analyze the structure, size, and work of formation of critical nuclei in self-associating fluids where association reduces the strength of the interactions between bonded particles. This effect is expected in systems of strongly dipolar particles that associate into chains. In this work we analyze the nucleation behavior of two types of self-associating fluids: a system comprised of particles that can freely associate, and a system in which the association process involves a thermally activated initiation step. For the first case, we explore the properties of critical nuclei in fluids that exhibit a metastable critical point between a vapor phase and a highly associated liquid phase. In fluids where the association dynamics involves an initiation step, we investigate the nucleation behavior in the vicinity of the polymerization transition. In both cases critical nuclei undergo a structural transition that shares many of the features of the coil-globule transition reported in Monte Carlo simulations of strongly dipolar Stockmayer fluids. Our results suggest that the sharp structural transition observed in these simulations is evidence of the existence of a second-order or nearly second-order association transition in these model fluids.  相似文献   

3.
A heuristic model based on dielectric continuum theory for the long-range solvation free energy of a dipolar system possessing periodic boundary conditions (PBCs) is presented. The predictions of the model are compared to simulation results for Stockmayer fluids simulated using three different cell geometries. The boundary effects induced by the PBCs are shown to lead to anisotropies in the apparent dielectric constant and the long-range solvation free energy of as much as 50%. However, the sum of all of the anisotropic energy contributions yields a value that is very close to the isotropic one derived from dielectric continuum theory, leading to a total system energy close to the dielectric value. It is finally shown that the leading-order contribution to the energetic and structural anisotropy is significantly smaller in the noncubic simulation cell geometries compared to when using a cubic simulation cell.  相似文献   

4.
In this work, we develop a simple potential model for polar molecules which represents effectively and accurately the thermodynamics of dilute gases. This potential models dipolar interactions whose nonpolar part is either spherical, as in Stockmayer (SM) molecules, or diatomic, as for 2-center Lennard-Jones molecules (2CLJ). Predictions of the second virial coefficient for SM and polar 2CLJ fluids for various dipole moments and elongations agree very well with results of recent numerical calculations by C. Vega and co-workers (Phys. Chem. Chem Phys. 2002, 4, 3000). The model is used to predict the critical temperature of Stockmayer fluids for variable dipole moment and is applied to HCl as an example of a real polar molecule.  相似文献   

5.
We report molecular dynamics simulation results for Stockmayer fluids confined to narrow slitlike pores with structureless, nonconducting walls. The translational and rotational dynamics of the dipolar particles have been investigated by calculating autocorrelation functions, diffusion coefficients, and relaxation times for various pore widths (five or less particle diameters) and directions parallel and perpendicular to the walls. The dynamic properties of the confined systems are compared to bulk properties, where corresponding bulk and pore states at the same temperature and chemical potential are determined in parallel grand canonical Monte Carlo simulations. We find that the dynamic behavior inside the pore depends on the distance from the walls and can be strongly anisotropic even in globally isotropic systems. This concerns especially the particles in the surface layers close to the walls, where the single particle and collective dipolar relaxation resemble that of true two-dimensional dipolar fluids with different in-plane and out-of-plane relaxations. On the other hand, bulklike relaxation is observed in the pore center of sufficiently wide pores.  相似文献   

6.
The static dielectric properties of Stockmayer fluids are investigated in the hyperspherical geometry, S(3). Different methods of obtaining the static dielectric constant ε(r) are compared. Tested methods include the evaluation of the Kirkwood factor, fluctuations of the total dipole moment, and a two-center potential correlation formula to obtain the dielectric constant through effective interactions. With no coupling to the "surrounding," the different methods give consistent estimates of the dielectric constant. Adding a coupling to the surrounding gives large size dependencies and the two-center potential correlation formula breaks down. For low dipole moments, there is a good agreement in the dielectric constant with previous studies.  相似文献   

7.
The exact bridge function of the Lennard-Jones dipolar (Stockmayer) fluid is extracted from Monte Carlo simulation data. The projections g(mnl)(r) onto rotational invariants of the non-spherically symmetric pair distribution function g(r, Ω) are accumulated during simulation. Making intensive use of anisotropic integral equation techniques, the molecular Ornstein-Zernike equation is then inverted in order to derive the direct correlation function c(mnl)(r), the cavity function y(mnl)(r), the negative excess potential of mean force lny|(mnl)(r), and the bridge function b(mnl)(r) projections. b(r, Ω) presents strong, non-universal anisotropies at high dipolar coupling. This simulation data analysis may serve as reference and guide for approximated bridge function theories of dipolar fluids and is a valuable step towards the case of more refined, nonlinear water-like geometries.  相似文献   

8.
We investigate by Monte Carlo simulation the size dependence of the variation of the polarization and the dielectric constant with temperature for dipolar hard spheres at the two densities rho sigma3=0.80 and 0.88. From the crossing of the fourth-order cumulant for different system sizes first more precise estimates of the ferroelectric transition temperatures are obtained. Theoretical approaches, when predicting an ordering transition, are shown to generally overestimate the critical temperature.  相似文献   

9.
In this study, we explore the global phase behavior of a simple model for self-associating fluids where association reduces the strength of the dispersion interactions between bonded particles. Recent research shows that this type of behavior likely explains the thermodynamic properties of strongly polar fluids and certain micellar solutions. Based on Wertheim's theory of associating liquids [M. S. Wertheim, J. Stat. Phys. 42, 459 (1986); 42, 477 (1986)], our model takes into account the effect that dissimilar particle interactions have on the equilibrium constant for self-association in the system. We find that weaker interactions between bonded molecules tend to favor the dissociation of chains at any temperature and density. This effect stabilizes a monomeric liquid phase at high densities, enriching the global phase behavior of the system. In particular, for systems in which the energy of mixing between bonded and unbonded species is positive, we find a triple point involving a vapor, a dense phase of chain aggregates, and a monomeric liquid. Phase coexistence between the vapor and the monomeric fluid is always more stable at temperatures above the triple point, but a highly associated fluid may exist as a metastable phase under these conditions. The presence of this metastable phase may explain the characteristic nucleation behavior of the liquid phase in strongly dipolar fluids.  相似文献   

10.
The fluid phase equilibrium of the Stockmayer fluid is investigated using a thermodynamic perturbation theory approach. The reference and the perturbation potential are the Lennard–Jones potential and the dipolar–dipolar interactions, respectively. They are assumed to be represented by the modified Benedict–Webb–Rubin equation of state [J.K. Johnson, J.A. Zollweg, K.E. Gubbins, Mol. Phys. 78 (1993) 591–618] and the Padé approximant [G. Stell, J.C. Rasaiah, H. Narang, Mol. Phys. 27 (1974) 1393–1414], respectively. The asymmetry found in an analogous study [M.E. van Leeuwen, B. Smit, E.M. Hendriks, Mol. Phys. 78 (1993) 271–283] based on the BWR equation of state [J.J. Nicolas, K.E. Gubbins, W.B. Streett, D.J. Tildesley, Mol. Phys. 37 (1979) 1429–1454] is now not observed on the vapour–liquid equilibrium coexistence curves of Stockmayer fluids with dipolar strength of μ*2 = 1, 2, 3, and 4. Results agree with computer simulations for dipolar strength of μ*2 = 1; however as strength dipole increases, liquid densities are over-estimated.  相似文献   

11.
The core-shell structural dielectric particles are applied widely in the electrorheological (ER) fluids. The properties of the dielectric core are critical factors influencing their ER activity. In this paper, we successfully synthesized two kinds of core-shell hydroxyl titanium oxalate (TOC) particles with SiO(2) and TiO(2) as core, respectively. The obtained core-shell structural SiO(2)-TOC and TiO(2)-TOC particles were well-dispersed spherical nanoparticles with ideal morphology and a narrow size distribution. Under DC electric fields, the TiO(2)-TOC ER fluid showed notable ER activity with a yield stress of about 96 kPa (at 4 kV/mm), which is 3 times of that SiO(2)-TOC ER fluid and outclassed the yield stress of the TOC ER fluid. The dielectric spectra indicated that the higher dielectric constant of TiO(2) core induces the stronger interaction between the neighboring particles, which contribute to the enhancement of ER activity.  相似文献   

12.
Mesostructures formed by dipolar particles confined between two parallel walls and subjected to an external field are studied by Monte Carlo simulations. The main focus of the work is the structural behavior of the Stockmayer fluid in the low density regime. The dependence of cluster thickness and ordering is estimated as a function of density and wall separation, the two most influential parameters, for large dipole moments and high field strengths. The great sensitivity of the structure to details of the short-range part of the interactions is pointed out. In particular, the attractive part of the Lennard-Jones potential is shown to play a major role in driving chain aggregation. The effect of confinement, evaluated by comparison with results for a bulk system, is most pronounced for a short range hard sphere potential. No evidence is found for a novel "gel-like" phase recently uncovered in low density dipolar colloidal suspensions [A. K. Agarwal and A. Yethiraj, Phys. Rev. Lett. 102, 198301 (2009)].  相似文献   

13.
The Kirkwood g-factor that determines the long wavelength dielectric constant of a simple, isotropic, translationally invariant dipolar fluid is given by an integral of a dipole-dipole correlation function over a spherical region of a nonzero radius R(K) chosen such that any further increase in the radius leads to no change in the value of the integral, thereby defining a Kirkwood correlation length R(K). For radii less than the correlation length the integral defines a radius dependent (nonlocal) Kirkwood g-factor, implying a nonlocal dielectric function. The nonlocal nature of these quantities has important consequences for the determination of the long wavelength dielectric function from dipole fluctuations via the Kirkwood-Fro?hlich connection. The dipole-dipole correlation function (the volume dipole auto-correlation function) commonly used in this determination involves particles residing solely within a sphere of radius R, unlike the correct correlation function which involves either a single particle with those particles in a spherical volume of radius R(K) or those particles in a spherical volume of radius R with those residing within a spherical volume of radius R+R(K). A procedure is suggested for extracting the infinite system dipole-dipole correlation function from results of simulations performed on finite spherical samples. Using some results reported in the recent literature, relative to the accurate correlation function the commonly used correlation function ranges from 27% too small for a sphere having a radius comparable to the Kirkwood correlation length to 4% too small at a radius of seven times that correlation length. As a result, the apparent dielectric constants, as determined by the conventional procedure of using the fluctuations of the sum of dipoles in a finite fixed volume, are also too small. This suggests that a dielectric constant extracted from computer simulations using a total dipole-total dipole correlation function in a given volume with other geometries and/or boundary conditions will result in similar errors.  相似文献   

14.
《Fluid Phase Equilibria》2001,178(1-2):45-71
A comprehensive study on various internal energies, pressures and chemical potentials for the pure dipolar hard sphere fluids, pure Stockmayer fluids, the Lennard–Jones and Stockmayer mixtures, the Stockmayer and Stockmayer mixtures and the ion–dipole mixtures is reported based on the perturbation theory (PT) and mean spherical approximation (MSA). Compared with the results of molecular simulations, it is shown that the PT is superior to MSA in most cases.  相似文献   

15.
The dipolar hard sphere fluid is a useful model for a polar fluid. Some years ago, the second virial coefficient, B(2), of this fluid was obtained as a series expansion in the inverse temperature or (dipole strength) by Keesom. Little work on this problem seems to have been done since that time. Using a result of Chan and Henderson for the spherical average of the Boltzmann factor of this fluid, more complete results are obtained for B(2). The more complete results are more negative than the Keesom series, as one would expect, but his expansion is remarkably accurate. This method can be used to obtain the second virial coefficient of the dipolar Lennard-Jones (Stockmayer) or dipolar Yukawa fluids.  相似文献   

16.
In this work we develop the concept of an effective potential to obtain the equation of state of polarizable Stockmayer (PSM) fluids. This potential consists of a Lennard-Jones function with appropriate energy and distance parameters that depend on the reduced dipolar moment μ(?) and polarizability α(?). The approach deals accurately with polarizable SM fluids with μ(?)≤2.0 and α(?)≤0.1. However, prediction of second virial coefficients is reliable up to μ(?)≤4.0. When the low-density sphericalized potential is used at moderate and large densities, the effect of the dipole-dipole attraction is overestimated in agreement with an effect previously found in the literature. This effect can be traced back to a frustration mechanism due to the interaction between three and more dipoles. We propose a model to account for this frustration effect and are able to reproduce the vapor-liquid equilibrium of polarizable SM fluids in agreement with simulated results from the literature. Molecular dynamics simulations were carried out to show that the effective SM fluid has a radial distribution function very close to that of the true SM system.  相似文献   

17.
We investigate the assembly of spherical and anisotropic colloidal particles with the shape of peanuts when subjected to an external alternating electric field. By varying the strength and frequency of the applied field, we observe that both types of particles form clusters at low frequencies due to attractive electrohydrodynamic interactions or disperse into a liquidlike phase at high frequencies due to repulsive dipolar interactions. We characterize the observed structures via pair correlation functions and radius of gyration, and observe a clear difference in the ordering process between the isotropic and anisotropic colloids. Further on, we interpret the cluster formation kinetics in terms of dynamic scaling theory, and observe a faster aggregation of the anisotropic colloids with respect to the isotropic ones.  相似文献   

18.
Surface-conductive particles consisting of a poly(methyl methacrylate) (PMMA) core and a polyaniline (PA)-coated shell were synthesized and adopted as suspended particles for electrorheological (ER) fluids. The PA-PMMA composite particles synthesized were monodisperse and spherical in shape. The PA-PMMA suspensions in silicone oil showed typical ER characteristics under an applied electric field. The PA-PMMA composite particles possess a higher dielectric constant and conductivity than the pure PA particle, within an acceptable conductivity range for ER fluids, but the PA-based ER fluid showed larger shear-stress enhancement than the PA-PMMA-based systems. This phenomena can be explained by the interfacial polarizability of PA-based ER fluids, which is the difference between the ER fluid's dielectric constant and loss factor - this polarizability was higher than that of PA-PMMA-based ER fluids, as shown by the dielectric spectrum of each fluid. The insulating PMMA core suppressed the interfacial polarization in ER fluids, resulting in reduced interaction among particles under an imposed electric field.  相似文献   

19.
R. Khordad  F. Hosseini  M.M. Papari   《Chemical physics》2009,360(1-3):123-131
In our previous works, we applied the integral equations method to calculate transport properties of nonpolar fluids such as Lennard–Jones (12-6) fluid [R. Khordad, Physica A 387 (2008) 4519, M.M. Papari, R. Khordad, Z. Akbari, Physica A 388 (2009) 585]. The present work is a continuation of our studies on transport properties of polar fluids. We use the Stockmayer potential and examine theoretically the viscosity and pressure of several refrigerant mixtures such as R125 + R143a, HFC-125 + HFC-134a, HFC-125 + HFC-32, and HFC-134a + HFC-32. We solve numerically the Ornstein–Zernike (OZ) equation using the hypernetted-chain approximation (HNC) for binary fluid mixtures and obtain the pair correlation functions. Finally, the density and temperature dependence of shear viscosity and pressure are studied using Vesovic–Wakeham method and compared with experimental results. According to the results obtained from the present work reveals that the integral equations method is suitable for predicting the pressure and shear viscosity of this class of fluids.  相似文献   

20.
Using a theory of polarizable fluids, we extend a variational treatment of an excess electron to the many-electron case corresponding to finite metal concentrations in metal-ammonia solutions (MAS). We evaluate dielectric, optical, and thermodynamical properties of MAS at low metal concentrations. Our semianalytical calculations based on a mean-spherical approximation correlate well with the experimental data on the concentration and temperature dependencies of the dielectric constant and the optical absorption spectrum. The properties are found to be mainly determined by the induced dipolar interactions between localized solvated electrons, which result in the two main effects: the dispersion attractions between the electrons and a sharp increase in the static dielectric constant of the solution. The first effect creates a classical phase separation for the light alkali metal solutes (Li, Na, K) below a critical temperature. The second effect leads to a dielectric instability, i.e., polarization catastrophe, which is the onset of metallization. The locus of the calculated critical concentrations is in a good agreement with the experimental phase diagram of Na-NH(3) solutions. The proposed mechanism of the metal-nonmetal transition is quite general and may occur in systems involving self-trapped quantum quasiparticles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号