首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The acrylamide‐based terpolymers (PADB) with 4‐butylstyrene (BST) as the hydrophobic monomer and dimethyldiallyammonium chloride (DMDAAC) were synthesized by the micellar free radical technique. The polymer was determined by UV, FT‐IR and 1HNMR, and the hydrophobic microblock structure of PADB was characterized successfully by the conventional DSC measurement. The use of DMDAAC improves the water solubility and intermolecular association of terpolymers. The feed amount of BST affects greatly the apparent viscosity of PADB solution. The polymer exhibits good viscosification property, salt resistance, temperature‐thickening, thixotropy, pseudoplastic behavior and shear‐thickening at low shear rate. The apparent viscosities of PADB solution remarkably increase by the addition of a small amount of surfactant. AFM measurements show that hydrophobic aggregates have been formed in 0.1 g dL?1 PADB aqueous solution, indicative of strong associations of hydrophobic groups, which are reinforced with increasing PADB concentration. The microstructures of PADB are disrupted by the addition of small amounts of salt, resulting in the decrease in solution viscosity. However, with increasing NaCl concentration, the tree‐like associating structures are formed, leading to the increase in the solution viscosity of PADB. The AFM results reveal that the solution properties of PADB are due to the associating structures in the aqueous solution and brine solution. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 826–839, 2007  相似文献   

2.
Flurocarbon-modified hydrophobically associating terpolymers have been prepared via copolymerization of acrylamide (AM), acryloyloxyethyl trimethyl ammonium chloride (DMAEA-Q) and a small amount of flurocarbon-containing acrylate (RFA) as a hydrophobic third monomer. Three series of terpolymers (AM/DMAEA/Q molar ratio 70/30, 50/50 and 30/70 with various amounts of RFA) were synthesized and the rheological properties of terpolymer solutions were studied. A pronounced hydrophobic association between the fluorocarbon groups in the terpolymer's solutions was observed. The solutions showed pseudoplastic behavior. Evidence for hydrophobic aggregation between the fluorocarbon groups was observed from the viscosity versus concentration profile, effects of shear rate and the addition of NaCl and surfactants on the viscosity of terpolymer solutions. © 1997 John Wiley & Sons, Ltd.  相似文献   

3.
A series of L‐lactide (LLA), 1,3‐trimethylene carbonate (TMC) and glycolide (GA) terpolymers (LTG) of different monomer molar ratios were synthesized by using ring‐opening copolymerization. An effective and low‐toxic zirconium (IV) acetylacetonate Zr(Acac)4 was used as catalyst. The viscosity‐average molecular weights (Mη) of obtained polymers were all above 2.2×104 g/mol. The chemical structure and viscosity of terpolymers were confirmed by Fourier transform infrared spectroscopy (FTIR), 1H nuclear magnetic resonance (1HNMR), 13C nuclear magnetic resonance (13CNMR) and an Ubbelohde viscometer. The thermal and mechanical properties were investigated by means of differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), X‐ray diffraction (XRD) and stress‐strain measurements. Results suggested that all terpolymers were amorphous and showed good thermal stability. Also it was found that elongation increased with the decreasing of LLA unit. More importantly, terpolymers displayed shape memory property when deformation temperatures were 14‐15 °C above Tg.  相似文献   

4.
The hydrophobically modified polyelectrolyte was synthesized using precipitation polymerization of acrylic acid and 3-[tris(trimethylsilyloxy)silyl]propyl methacrylate (TMSPMA) in various molar ratios in supercritical carbon dioxide. FT-IR, 1H NMR, capillary viscometry, rotational viscometer, transmission electron microscopy and fluorescence spectroscopy were used to characterize this copolymer. The viscosity of the copolymers showed a strong dependence on pH with a maximum at pH=5.5. Associating morphologies of the copolymer were observed by TEM. Associating morphologies of poly(AA-co-TMSPMA) solution changed from a global structure to a shell-core structure with increasing hydrophobic levels. A solution of sample PAT4 with a shell-core structure had the largest viscosity value. In addition, the critical micelle concentration of copolymer solution, cmc, was determined from the relative viscosity. The critical micelle concentration was further confirmed by fluorescence spectroscopy using 1-pyrenemethylamine hydrochloride, PyMeA⋅HCl, as a cationic fluorescent probe. The cmc was determined from the intensity ratios, the first to the third emission peaks I 1/I 3, and the excimer to monomer I E/I M ratio of the pyrene probe as a function of concentration.  相似文献   

5.
Terpolymers of sodium acrylate (NaA), acrylamide (AM), and the zwitterionic monomer 4-(2-acrylamido-2-methylpropanedimethylammonio) butanoate (AMPDAB) were prepared by the free radical polymerization in 0.5M NaBr aqueous solution using potassium persulfate as the initiator. The feed ratio of AMPDAB : NaA : AM was varied from 5 : 5 : 90 to 40 : 40 : 20 mol %, with the total monomer concentration held constant at 0.45M. Terpolymer compositions were determined by 13C NMR. Molecular weights varied from 3.0 × 105 to 9.7 × 106 g/mol. All terpolymers were soluble in deionized water and salt solutions at all pH values. The dilute and semidilute solution behavior of the terpolymers was studied as a function of composition, pH, and added electrolytes. Polyelectrolyte behavior was observed for all terpolymers at pH 8.5, as evidenced by high viscosity values at low polymer concentrations and viscosity decrease in the presence of added electrolytes. The reduced viscosity as a function of decreasing pH exhibits a minimum as the terpolymer undergoes a polyanion/polyzwitterion/polycation transition. Comparison of the solution behavior of the terpolymers to terpolymers of 3-(2-acrylamido-2-methylpropane dimethylammonio)-1-propane sulfonate (AMPDAPS), AM, and NaA (AADAPS series) as well as copolymers of AMPDAB and AM (AMPDAB series) have been made. © 1997 John Wiley & Sons, Inc.  相似文献   

6.
Biodegradable star-shaped copolymers comprised of four-arm poly(ethylene glycol) (4-arm PEG) and poly(β-amino ester) (PAE) were synthesized by conjugating PAE to 4-arm PEG. The synthesized copolymers were characterized by 1H and 13C NMR and gel permeation chromatography. The PAE showed pH/temperature-sensitive properties in an aqueous solution. The copolymer solutions (30 wt.%) showed a gel-to-sol phase transition as a function of temperature in the pH range 7.2–7.8. The gel window covers the physiological conditions (37 °C and pH 7.4) and can be controlled by varying the PAE block length, copolymer solution concentration and PEG molecular weight. After a subcutaneous injection of the copolymer solution into a SD rat, a gel formed rapidly in situ which remained for more than 2 weeks in the body. This copolymer is expected to be a potential candidate for biomedical applications.  相似文献   

7.
Amphiphilic graft copolymer composed of poly(∈-caprolactone) and dextran was synthesized by ring opening polymerization of ∈-caprolactone initiated through the hydroxyl end of dextran in the presence of stannous 2-ethylhexanoate [Sn (oct)2] as a catalyst. It has been widely characterized by Fourier transform infrared spectroscopy, 1H NMR, and thermogravimetric analysis. Nanoparticles were prepared in aqueous medium by co-solvent evaporation technique at room temperature (25 °C). Hydrodynamic diameter and particle size were measured by dynamic light scattering spectroscopy and atomic force microscopy, respectively. Core-shell geometry of polymeric nanoparticle was characterized by fluorescence spectrophotometer using pyrene as a probe. Critical micelle concentration of polymer in triple distilled water decreased from 6.9 × 10−4 to 8.9 × 10−4 g/l with increasing hydrophobic moiety. Further, the physiological stability of the nanoparticles in phosphate buffer saline of pH 7.4 at 37 °C was evaluated, which showed promising in drug delivery system.  相似文献   

8.
A series of terpolymers were synthesized by the chemical oxidative polymerization of m‐phenylenediamine (MPD), o‐anisidine (AS), and 2,3‐xylidine (XY) in hydrochloride aqueous medium. The yield, intrinsic viscosity, and solubility of the terpolymers were studied by changing the MPD/AS/XY molar ratio from 100/0/0 to 53/39/8 to 0/100/0. It was discovered that the MPD/AS/XY terpolymers exhibit a higher polymerization yield and better solubility than MPD/AS and MPD/XY bipolymers having the same MPD molar content. The as‐prepared MPD/AS/XY terpolymer bases were characterized by Fourier transform infrared, ultraviolet–visible, 1H NMR, and high‐resolution solid‐state 13C NMR spectroscopies; wide‐angle X‐ray diffraction; and thermogravimetry. The results suggested that the oxidative polymerization from MPD, AS, and XY is exothermic, and the resulting terpolymers are more easily soluble in some organic solvents than MPD homopolymer. The copolymer obtained was a real terpolymer containing MPD, AS, and XY units, and the actual MPD/AS/XY molar ratio calculated by solid‐state 13C NMR spectra of the polymers is very close to the feed ratio, although the AS content calculated on the basis of the 1H NMR spectrum of the soluble part of the polymer is higher than the feed AS content. The terpolymers and MPD homopolymer exhibit a higher polymerization yield and much higher intrinsic viscosity and are more amorphous than the AS homopolymer. At a fixed MPD content of 70 mol %, the terpolymers exhibit an increased thermostability and activation energy of the major degradation in nitrogen and air with an increasing AS content. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 3989–4000, 2001  相似文献   

9.
1H NMR self-diffusion coefficient, spin-lattice relaxation time, spin-spin relaxation time, and two-dimensional nuclear Overhauser enhancement (2D NOESY) measurements have been used to study the association behavior of a novel hydrophobically associating copolymer composed of acrylamide (AM) and a small amount of 2-phenoxyethyl acrylate (POEA), and its interaction with the anionic surfactant sodium dodecyl sulfate (SDS). Three sets of copolymers with approximately the same composition but with different hydrophobic POEA contents were investigated. The POEA contents for these copolymers were about 1.41, 1.03, and 0.56 mol% respectively, as validated by 1H NMR spectra. Self-diffusion coefficient measurements show that the aggregation process occurs in a relative narrow concentration range and the critical association concentrations (cacs), of these copolymers are within this narrow concentration range, which are in agreement with those measured by viscosity measurements (6 g L–1). Above this concentration, the hydrophobic POEA moieties are found to associate and possibly build a transitory three-dimensional network along the polyacrylamide (PAM) backbones, which induces a strong decrease in NMR parameters including self-diffusion coefficients and relaxation times. The surfactant SDS showed a significant interaction with the copolymer in the dilute solution. Addition of SDS resulted in the binding of SDS on copolymer POEA-PAM segments and reinforced the interchain transient network formation of copolymer at a concentration below its cac. In the SDS/POEA-PAM mixed systems, the hydrophobic methylene groups of the SDS molecules were preferentially located in the vicinity of the phenoxy groups of the POEA hydrophobes.  相似文献   

10.
Density (ρ), viscosity (η), and surface tension (γ) for 0.005–0.25 mol ⋅ kg−1 solutions of urea, 1-methylurea, and 1,3-dimethylurea solutions have been measured at intervals of 0.005 mol ⋅ kg−1. Apparent molal volume (V o, cm3 ⋅ mol−1) and intrinsic viscosity coefficients (B and D) are calculated from the ρ and η values, respectively. Primary data were regressed and extrapolated to zero concentration for the limiting density (ρ 0), apparent molal volume (V φ 0), viscosity (η 0), and surface tension (γ 0) values for solute–solvent interactions. The –CH3 (methyl) groups of N-methylureas weaken hydrophilic interactions and enhance hydrophobic interactions, and the values of the ρ 0 and V φ o reflect the intermolecular forces due to electrostatic charge, whereas the η 0 and γ 0 values reflect the frictional and surface forces. The B values depict the size of hydrodynamic sphere due to heteromolecular forces whereas D shows the effect of concentration. The molar surface energy (ΔE m/sur) for dropwise flow was calculated from the γ values and decreases with concentration and temperature, but increases with –CH3 weakening of the hydrophilic interactions and strengthening the hydrophobic interactions.  相似文献   

11.
The hydrophobic interaction between hydrophobically modified acrylamide copolymer (HMPAM) and poly(N‐isopropylacrylamide) (PNIPAM) in aqueous solutions was investigated. The results show that the solution properties of HMPAM are significantly influenced by the addition of PNIPAM. In dilute regime, the intrinsic viscosity of HMPAM in 0.025 wt % PNIPAM/0.1 M NaCl mixed solution is 17.52 dL g?1, about 2 times 8.66 dL g?1, that in 0.1 M NaCl solution, which is due to the attractive interaction between the hydrophobic parts of PNIPAM and HMPAM molecules. In semidilute regime, below the saturation concentration, the addition of PNIPAM can lead to both the apparent viscosity and the modulus of HMPAM solutions increasing, which is attributed to the number of aggregation junctions increasing, responsible for the increase of the contribution of the reversible network to the viscosity increase, the β value. In addition, a thermothickening behavior for the HMPAM/PNIPAM mixed solution is observed with increasing temperature over 15–30 °C, which is consistent with the large increase of the Huggins coefficient of HMPAM in the presence of PNIPAM from 1.95 to 7.59 as temperature increases from 25 to 30 °C. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 709–715, 2005  相似文献   

12.
The viscosity of 10 (0.049, 0.205, 0.464, 0.564, 0.820, 1.105, 1.496, 2.007, 2.382, and 2.961 mol ċ kg−1) binary aqueous NaBr solutions has been measured with a capillary-flow technique. Measurements were made at pressures up to 40 MPa. The range of temperature was 288–595 K. The total uncertainty of viscosity, pressure, temperature and composition measurements were estimated to be less than 1.6%, 0.05%, 15 mK, and 0.02%, respectively. The effect of temperature, pressure, and concentration on viscosity of binary aqueous NaBr solutions were studied. The measured values of the viscosity of NaBr(aq) were compared with data, predictions and correlations reported in the literature. The temperature and pressure coefficients of viscosity of NaBr(aq) were studied as a function of concentration and temperature. The viscosity data have been interpreted in terms of the extended Jones–Dole equation for the relative viscosity (η/η0) to calculate accurately the values of viscosity A- and B-coefficients as a function of temperature. The derived values of the viscosity A- and B-coefficients were compared with the results predicted by the Falkenhagen–Dole theory of electrolyte solutions and calculated with the ionic B-coefficient data. The physical meaning parameters V and E in the absolute rate theory of the viscosity and hydrodynamic molar volume V k were calculated using the present experimental viscosity data. The TTG model has been used to compare predicted values of the viscosity of NaBr(aq) solutions with experimental values at high pressures.  相似文献   

13.
In the present work, some polymeric additives were prepared to use as viscosity index improvers and pour point depressants for lube oil via copolymerization of hexadecylacrylate and dodecylacrylate with styrene. Structure of the prepared compounds was confirmed by infrared spectroscopy and nuclear magnetic resonance. The molecular weights of the prepared copolymers were determined by using gel permeation chromatograph. The efficiency of the prepared terpolymers as viscosity index improvers and pour point depressants for lube oil was investigation. It was found that all the prepared terpolymers are effective as viscosity index improvers and pour point depressants. The viscosity index of the prepared terpolymers increases with increasing the concentration of the additives and increases by increasing the percentage of hexadecylacrylate until 70%. The best result for viscosity index of the prepared terpolymers is when the percentage of styrene is 10%. The pour point of the prepared compound decreases with decreasing concentration of additive used.  相似文献   

14.
ABSTRACT

Copolymers composed of acrylamide (AM), N,N-dimethylacrylamide (DMAM), N-isopropylacrylamide (NIPAM) and 2-(N-ethyl-perfluorooctanesulfonamido) acrylamide (FOSA) were synthesized by free radical polymerization. The chemical structure of the resulting polymers was characterized with NMR spectroscopy and thermal properties were measured by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). 1H-NMR spectra of the copolymers of NIPAM with FOSA showed that FOSA was incorporated quantitatively. The glass transition temperature (Tg) of the copolymers and the terpolymers decreased with increasing FOSA content. The Tgs, however, were higher than predicted for a random copolymer by the Fox equation, which was attributed to microphase separation of the hydrophobic, fluorinated species. Copolymers of AM and FOSA became discolored above 180°C due to formation of cyclic imide and nitrile moieties through cyclization or dehydration of amide groups. The equilibrium water sorption of the copolymers decreased with increasing FOSA content, but increasing FOSA suppressed the water desorption kinetics. Water sorption and thermal stability were improved by terpolymerization of AM, NIPAM, DMAM and FOSA.  相似文献   

15.
Rheological properties of hydrophobically modified copolymer of SO2, N,N-diallyl-N-carboethoxymethylammonium chloride and the hydrophobic monomer N,N-diallyl-N-octadecylammonium chloride were studied. The influence of hydrophobe content (HP) and polymer concentration was investigated. Polymers with HP content in the range 1.5-5% were examined and the concentration was varied in the range 2-5 wt%. Both dynamic and steady-shear experiments were performed in ARES rheometer. Copolymers were observed to exhibit typical viscoelastic behavior even with low HP content. Both the dynamic viscosity, η′ and storage modulus, G′, increase with the increase of both the polymer concentration and the HP content of the system. The viscosity of the high HP content polymer showed a strong shear dependency, while G′ was a weak function of frequency and gel-like behavior was observed. The zero-shear viscosity, η0, showed a strong concentration dependency (η0 ∼ ?α; 1.1 < α < 5.9). The concentration dependency of η0 suggests that intermolecular association is dominant in the high HP content polymer. Control of the HP content and polymer concentration of this class of polymers can lead to a wide range of interesting rheological properties.  相似文献   

16.
This paper describes two kinds of elastomeric binders which are styrene–butadiene (ST–BD) copolymer and 2-ethylhexyl acrylate–acrylonitrile (2EHA–AN) copolymer for electrode materials of rechargeable Li-ion batteries. These elastomeric binders were swollen by electrolyte solution (EC/DEC=1/2, 1 M LiPF6), and 2EHA–AN copolymer retained larger amount of electrolyte solution than ST–BD copolymer. The Li-ionic conduction behavior was investigated for both copolymer films swollen by electrolyte solution. The Li-ion conductivity of ST–BD copolymer was 9.45 × 10−8 S·cm−1 and that of 2EHA–AN copolymer was 1.25 × 10−5 S·cm−1 at room temperature, and the corresponding amounts of activation energy were 0.31 and 0.26 eV, respectively. Because the observed activation energy in elastomeric binder was different from that in the bulk of electrolyte solution (0.09 eV), Li-ion conduction of the bulk of elastomeric binder swollen by electrolyte was affected by the polymer structure of binders. Electrochemical performance of cathode material, LiCoO2, was investigated with three kinds of binders: ST–BD copolymer, 2EHA–AN copolymer, and poly(vinylidene fluoride). The initial charge–discharge capacity of the LiCoO2 electrode with 2EHA–AN copolymer showed highest capacity, suggesting that Li+-ion conduction inside of the elastomeric binder contributes to the enhancement of charging and discharging capacity. This result indicates that elastomeric binder with sufficient Li-ionic conductivity can be an attractive candidate for improving cathode of lithium-ion battery.  相似文献   

17.
A series of random terpolymers P2-P5 were designed and synthesized by randomly embedding 5 mol%, 10 mol%, 15 mol%and 25 mol% feed ratios of low cost 2,2-bithiophene as the third monomer to the famous donor-acceptor(D-A) type copolymer PTB7-Th(P1). All polymers showed similar molecular weight with number-average molecular weight(Mn) and weight-average molecular weight(Mw) in the range of(59-74) and(93-114) kg·mol~(-1), respectively, to ensure a fair comparison on the structure-property relationships.Compared with the control copolymer PTB7-Th, the random terpolymers exhibited enhanced absorption intensity in a wide range from400 nm to 650 nm in both solution and film as well as in polymer/PC71 BM blends. From grazing incident wide-angle X-ray diffraction(GIWAXS), compared with the regularly alternated copolymer PTB7-Th, the random terpolymers demonstrated mild structural disorder with reduced(100) lamellar stacking and slightly weakened(010) π-π stacking for the polymers as well as slightly reduced PC71 BM aggregation in polymer/PC71 BM blends. However, the measured hole mobility for terpolymers((1.20-3.73) × 104-cm2·V-1·s~(-1)) was evaluated to be comparable or even higher than 1.35 × 10~(-4) cm~2·V~(-1)·s-1 of the alternative copolymer. Enhanced average power conversion efficiency(PCE) from 7.35% to 8.11% and 7.79% to 8.37% was observed in both conventional and inverted device architectures from copolymer P1 to terpolymers P4, while further increasing the 2,2-bithiophene feed ratio decreased the PCE.  相似文献   

18.
Adsorption of water vapor on methacrylate copolymers and terpolymers was studied. An increase in the content of the cross-linking agent gives rise to increase in the limiting adsorption of water vapor at the saturation pressure (a s) and to decrease in the concentration of primary adsorption centers. Modification of the initial copolymer containing 60 % of 2,3-epoxypropyl methacrylate (EPMA) monomer and 40 % of cross-linking agent, ethylene dimethacrylate, with diethylenetriamine (DETA) results in an increase in thea s value, while modification with C12 and C18 alkyl, benzyl, and phenyl groups gives rise to decrease in thea s values for the copolymeric sorbents. The concentration of primary adsorption centers (a m) increases considerably on modification of the copolymer with DETA and C12 groups and decreases markedly on modification with benzyl and phenyl groups. For terpolymers, containing EPMA and styrene, an increase in the styrene/EPMA ratio reduces thea s anda m values. The copolymer modified with DETA groups possesses the most hydrophilic properties, while the copolymer modified with benzyl group exhibits the most hydrophobic properties. The mechanism of adsorption of water molecules on the polymers is discussed.Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 11, pp. 2163–2167, November, 1995.The work was financially supported by the Russian Foundation for Basic Research (Project No. 94-03-09550).  相似文献   

19.
Fundamental properties, density (ρ) and viscosity (η), of citric acid (CA) and disodium hydrogen orthophosphate (DSP) at various strengths were obtained at different temperatures. The ρ and η values were used to determine apparent molal volumes and viscosity of systems. The ρ, VΦ and η values were regressed against molalitym for ρ0, η0 and V Φ 0 , the limiting constants at infinite dilution (m → 0) for ionic and molecular interactions. The ρ0 and V Φ 0 of aq. acids are higher than those of aq. DSP and the viscosity of DSP is higher than that of aq. CA. Examination of ρ0 and V Φ 0 functions indicates that mutual compositions of CA and DSP counterbalance concentration and temperature effects on pH in bioprocesses.  相似文献   

20.
This study presents the synthesis and properties of linear PVDF-based amphiphilic triblock terpolymers with PS and PEO, [PVDF-b-PS-b-PEO], by adopting a procedure that involves: (a) iodine-transfer polymerization (ITP) of VDF with 1-iodoperfluorohexane (C6F13I) serving as chain-transfer agent (CTA) to afford C6F13-PVDF-I, (b) ITP of styrene with the C6F13-PVDF-I macromolecular-CTA to obtain C6F13-PVDF-b-PS-I diblock copolymer, (c) end-group exchange from iodo- to azido-group by nucleophilic substitution reaction with NaN3, and (d) copper-catalyzed azide-alkyne cycloaddition (CuAAC) with alkyne-terminated PEO to achieve C6F13-PVDF-b-PS-b-PEO triblock terpolymers. The 1H and 19F NMR spectroscopy confirmed the presence of all blocks, while gel permeation chromatography traces showed the living nature of ITP technique. The self-assembly of these terpolymers was investigated in films (atomic force microscopy and DSC), as well as in aqueous and organic solvents (DLS). The analysis of crystalline phases based on the FTIR spectroscopy indicated the conversion of PVDF α-phase into α + β-phases and β + γ-phases upon the incorporation of PS and PEO blocks, respectively. The synthesized amphiphilic copolymers were evaluated (fluorescence spectroscopy) as carriers of small hydrophobic molecules in water. © 2019 Wiley Periodicals, Inc. J. Polym. Sci. 2020 , 58, 163–171  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号