首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The electronic structure of two photosensitizing isotruxene dyes used in Grätzel photoelectro-chemical cells has been investigated by the quantum-chemical methods of the density functional theory (DFT) and Bader’s topological analysis of the electron density. It has been shown that intramolecular interactions in the dye molecules stabilize the planar relative arrangement of isotruxene and cyano-acrylic structural fragments, which provides π-conjugation over the whole molecular backbone. Based on the time-dependent density functional theory (TDDFT) calculations and analysis of the Kohn-Sham orbitals, it has been found that the first vertical electronic transition in the spectra of the isotruxene dyes is a combination of a poorly resolved lπ*-type excitation and a well-resolved π-π* excitation. The π-π* excitation admixture is associated with the asymmetric structure of the isotruxene fragment and contributes significantly to the intensity of the first electronic transition.  相似文献   

2.
Two conjugated organic dyes comprising the benzo[b]furan moieties as the electron donor and cyanoacetic acid moieties as the electron acceptor/anchoring groups have been investigated using a quantum chemical method. The molecular equilibrium geometries and ground state character were studied using density functional theory. Absorption spectra were obtained using time-dependent density functional theory and semiempirical ZINDO. The nature of absorption spectra was further studied using 2D and 3D real-space analysis; here, 2D real-space analysis showed electron–hole coherence, and 3D real-space analysis showed intramolecular charge transfer during photo-excitation. As important parameters, excited state oxidation potential and driving force energy were obtained to reveal the relationship between molecular structure and performance of two compounds.  相似文献   

3.
We report preparation and improvement in photovoltaic performance of N719-based dye-sensitized solar cells (DSSCs) using pressurized carbon dioxide (CO2) as a co-solvent for the absorption process on the TiO2 photoelectrode surface. Effective absorption of the N719 molecules on the TiO2 surface was achieved using CO2 processing, and the absorption time was shortened drastically from 24 h (in the dip process) to less than 3 h. The cells prepared under pressurized CO2 for the absorption showed greater photovoltaic performance, especially higher short-circuit current density and conversion efficiency, compared with that from typical dip method. It was revealed that the suitable CO2 pressure for the absorption was 5 MPa and the efficiency was achieved to be more than 7.5 %. Prevention of back electron transfer reactions from TiO2 to oxidized dyes or iodides was caused currently, because the homogeneous coverage of N719 molecules on the TiO2 surface was obtained by the use of pressurized CO2.  相似文献   

4.
The paper reports Time Dependent Density Functional Theory (TD DFT) calculations providing the structure, electronic properties and spectra of [Ru(II)(bpy)3? n (dcbpy) n ]2+ and [Rh(III)(bpy)3? n (dcbpy) n ]3+ complexes, where bpy?=?2,2′-bipyridyl, dcbpy?=?4,4′-dicarboxy-2,2′-bipyridyl, and n?=?0,?1,?2,?3, studied as possible pigments for dye-sensitized solar cells. The role of the metallic ion and of the COOH groups on the optical properties of these complexes are compared and contrasted and their relevance as dyes for hybrid organic–inorganic photovoltaic cells is discussed. It was found that the optical spectra are strongly influenced by the metallic ion, with visible absorption bands for the Ru(II) complexes and only ultraviolet bands for the Rh(III) complexes. Upon excitation, the extra positive charge of the Rh3+ centre tends to draw electrons towards the metal ion, facilitating some charge transfer from the ligand to the metal, whereas in the case of the Ru2+ ion the electron transfer is clearly from the metal to the ligand. The carboxyl groups play an important role in strengthening the absorption bands in solution in the visible region. Of the complexes studied, the most suited as pigments for dye-sensitized solar cells are the [Ru(II)(bpy)3? n (dcbpy) n ]2+ complexes with n?=?1 and 2. This is based on the following arguments: (i) their intense absorption band in the visible region, (ii) the presence of the anchoring groups allowing the bonding to the TiO2 substrate and the charge transfer, and (iii) the good energy level alignment with the conduction band edge of the semiconducting substrate and the redox level of the electrolyte.  相似文献   

5.
We investigate a series of phenothiazine (PT)-based organic dyes by adopting different donors and different donor substitution positions as photosensitisers for application in dye-sensitised solar cells (DSSCs). First-principles calculations reveal systematic improvements of key parameters including light-harvesting efficiency, redox potential, electron injection and non-linear optical properties with donor substitutions. The non-planar structure also suppresses dye aggregation and reduces the rate of internal charge recombination. In particular, photosensitisers with combination of donor functional groups show outstanding performance on these key parameters. This study demonstrates that PT-based dyes with the studied donor groups could serve as excellent candidates of photosensitisers for future DSSC applications.  相似文献   

6.
All electronic devices are plagued with 1/f noise originating from many causes. The most important factors contributing to 1/f noise in a semiconductor is believed to be recombination of carriers and their trapping at defects and impurity sites. Adsorption of moisture and electron acceptor molecules enhances the intensity of 1/f noise. Amazingly, some molecular species that strongly chelate to the semiconductor surface, suppress 1/f noise owing to passivation of the recombination sites. Thus in addition to sensitization, the dye adsorbed on the nanocrystallites plays a key role in mitigation of recombinations. For this reason dye-sensitized heterojunctions could also find application as low noise NIR photon detectors. Experiments conducted with oxide semiconductors (TiO2, ZnO, SnO2) indicate that the mode of binding of dyes at specific sites determines the extent to which the recombination and 1/f noise are suppressed. The transport of electrons in a nanocrystalline matrix is diffusive with a diffusion coefficient D depending on the trapping and detrapping processes. Thus passivation of trapping sites by the adsorbed dye is expected to increase the response time which can be expressed as τ  L2/D, where L = thickness of the nanocrystalline film. Measurement techniques and construction of a dye-sensitized NIR photon detector will be discussed.  相似文献   

7.
The molecular structures, linear and nonlinear optical properties of a series constituted by four R-substituted thiophene imino dyes, namely A(R?=?SO2Me), B(R?=?SO2Ph), C(R?=?NO2), and D(R?=?C2(CN)3) were analysed using CAM-B3LYP, ωB97XD and LC-ωPBE hybrid DFT functionals in combination of the 6-311++G(d,p) standard basis set. The dipole moments, polarisabilities, HOMO-LUMO energy gaps, maximum absorption wavelengths and first hyperpolarisabilities were calculated in the gas phase and the obtained results are in good agreement with experimental NLO activity order A?<?B?<?C. Compared to synthesised dyes A-C, the designed dye D presents a longer maximum absorption wavelength and a lower HOMO-LUMO gap because of the appreciable stabilisation of its LUMO energy. These results were confirmed by the calculation of the total second-order stabilisation energy E(2) defined in the context of the NBO population analysis. Consequently, dye D is predicted to exhibit a higher first hyperpolarisability in comparison with dyes A-C. This result can be justified by the enhanced intramolecular charge transfer in dye D due to the stronger electron-withdrawing ability and the cumulative action of the long π-conjugation of the tricyanovinyl moiety. The very high total hyperpolarisability (27 times greater than that of para-nitroaniline) of the designed dye D suggests its promising use in organic NLO devices.  相似文献   

8.
It is known that CdTe solar cells are often degraded under solar illumination. But the degradation mechanism is not fully proved because it does not appear consistently. The junction degradation in CdS/CdTe solar cells was investigated using a CdTe layer with Cd deficient composition, where Cd vacancy concentration is high. It was found that the Cu atoms easily filled the Cd vacancies in CdTe and transport to junction area from Cu back contact. PL measurement and spectral quantum efficiency measurement showed that the incorporation of Cu atoms in CdS forms a defect energy level at 1.55 eV below the conduction band in CdS. As a result, the junction built-in potential is decreased and light penetration into CdTe absorber is shielded. For reliable and stable CdTe cells, the formation of Cd vacancy in CdTe should be avoided by careful control of CdTe.  相似文献   

9.
张苑  赵颖  蔡宁  熊绍珍 《物理学报》2008,57(9):5806-5809
以商用金红石相TiO2粉末为原料,通过在碱性溶液中150℃水热48h的方法合成TiO2纳米管.采用SEM,TEM,XRD分析手段对TiO2纳米管的形貌和结构演变进行了表征.制成的TiO2纳米管与TritonX-100,乙酰丙酮混合后,通过丝网印刷的方法涂敷到ITO导电玻璃衬底上,并且在450℃下烧结30min后得到可应用于染料敏化太阳电池的多孔光阳极.将此光阳极浸泡于N719染料敏化后,与镀铂对电极组装电池,两者之间灌 关键词: 2纳米管')" href="#">TiO2纳米管 染料敏化太阳电池 水热法  相似文献   

10.
In this study, nano-TiO2 thin film electrode and solar cell have been investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), ultraviolet-visible absorption spectra, contact angle, X-ray photoelectron spectroscopy (XPS), and current-voltage characteristics analyses. X-ray diffraction patterns show that the best sintering temperature of a nano-TiO2 film is 600 °C, at which TiO2 anatase phase forms best and the particle size of 8-10 nm can be obtained. The SEM images of a nano-TiO2 thin film show that the surface of the film is smooth and porous, and the thickness of the nano-TiO2 film is 4 μm. The measurements of contact angle between nano-TiO2 film and deionized water (DI water) reveal that the nano-TiO2 film is super-hydrophilic when solarized under ultraviolet. The electrode of dye-sensitized solar cell is used as a free-base porphyrin with carboxyl group, 5,10,15,20-tetrakis (4-carboxyphenyl) porphyrin (TCPP) as the sensitizer to adsorb onto the TiO2 thin film. From the results of ultraviolet-visible absorption spectra and XPS analyses of the electrode, the effects of nano-TiO2 particles’ addition to the electrode of dye-sensitized solar cell can improve the absorption of visible light (400-700 nm) and increase electrons transferred from TCPP to the conduction band of TiO2, resulting in the enhancement of efficiency for dye-sensitized solar cells.  相似文献   

11.
This paper studies the light scattering and adsorption of nanocrystalline TiO2 porous films used in dye-sensitized solar cells composed of anatase and/or rutile particles by using an optical four-flux radiative transfer model. These light properties are difficult to measure directly on the functioning solar cells and they can not be calculated easily from the first-principle computational or quantitative theoretical evaluations. These simulation results indicate that the light scattering of 1 25 nm TiO2 particles is negligible, but it is effective in the range of 80 and 180 nm. A suitable mixture of small particles (10 nm radius), which are resulted in a large effective surface, and of larger particles (150 nm radius), which are effective light scatterers, have the potential to enhance solar absorption significantly. The futile crystals have a larger refractive index and thus the light harvest of the mixtures of such larger rutile and relatively small anatase particles is improved in comparison with that of pure anatase films. The light absorption of the 10μm double-layered films is also examined. A maximal light absorption of double-layered film is gotten when the thickness of the first layer of 10 urn-sized anatase particles is comparable to that of the second larger rutile layer.  相似文献   

12.
Controllable synthesis of the TiO2-B nanowires (NWs) and nanoparticles (NPs) had been achieved via a facile hydrothermal route, respectively, only by tuning the solution volume. The dye-sensitized solar cells prototypes had been fabricated using TiO2-B NW and NP electrodes, respectively. The TiO2-B NP cells had higher photocurrent and photoelectrical conversion efficiency than the TiO2-B NW cells though the latter exhibited larger photovoltage compared to the former. The key factors such as the photogenerated electron injection drive force, surface defects and the interfacial charge transfer, which determined the photoelectrical properties, had been systematically researched with the surface photovoltage spectra (SPS) and the electrochemical impedance spectra (EIS). The SPS proved that there was larger photoelectron injection drive force in TiO2-B NP photoelectrode than that in NW photoelectrode. And the electrochemical impedance spectra (EIS) revealed that TiO2-B NP cells had faster interface charge transfer compared to TiO2-B NW cells. Both proved that NP cells had the higher photocurrents.  相似文献   

13.
在低温条件下采用定向刻蚀技术, 对金属Ti片表面用H2O2溶液进行刻蚀氧化, 制备了垂直生长的纳米TiO2叶片状阵列薄膜电极. 通过X射线衍射分析表明, 纳米TiO2叶片状阵列薄膜经500 ℃下烧结1 h后, 从无定型转变为锐钛矿相. 场发射扫描电子显微镜观察表明: 在80 ℃下的H2O2溶液刻蚀氧化, 经1 d制备得到的是Ti片表面垂直生长的叶片状阵列, 其形貌均匀且完整地 关键词: 2')" href="#">纳米TiO2 叶片状阵列电极 染料敏化太阳电池 电子传输  相似文献   

14.
采用强度调制光电流谱(IMPS)和强度调制光电压谱(IMVS)研究电池内部电子传输机理和电子背反应动力学特性.利用理论表达式对不同TiO2多孔膜厚度(d)的电池实验数据进行了拟合,得到了电池的吸收系数(α)、电子扩散系数(Dn)、电子寿命(τn)、电子传输时间(τd)和入射单色光光电转化效率(IPCE)等微观参数的数值.研究表明:膜薄有利于加快电子传 关键词: 染料敏化 太阳电池 IMPS/IMVS 传输  相似文献   

15.
In this study, the open-circuit photovoltage (V oc) decay technique was used to investigate the relationship between the electrode film morphology and the open-circuit photovoltage. Results indicate that dye-sensitized solar cells (DSCs) based on ordered arrays of TiO2 nanostructures (100 nm external diameters and 20–50 nm internal diameters) generally show higher open-circuit photovoltage (V oc) values than those based on sintered TiO2 nanoparticles (20–40 nm diameters). In particular, cells based on thick nanotubules (wall thickness ≥ 45 nm in our research) and on nanorods (100 nm diameters) show particularly high V oc values, indicating slow recombination kinetics under open-circuit conditions. It can be argued that the nanorods and the thick nanotubules act like singles crystals and therefore the injected electrons in the inner TiO2 molecules are shielded from holes in the electrolyte under open-circuit conditions. The open-circuit recombination time constant of electrons accumulated in the TiO2 conduction band is therefore prolonged and resulting in high V oc values.  相似文献   

16.
陈双宏  翁坚  王利军  张昌能  黄阳  姜年权  戴松元 《物理学报》2011,60(12):128404-128404
太阳电池组件由于局部电压不匹配,其中部分电池可能较长时间工作在负偏压状态下,从而影响电池光电性能.借助拉曼光谱、电化学阻抗谱和入射单色光量子效率(IPCE)等测试手段,研究长期负偏压作用下染料敏化太阳电池光电性能的变化及其影响机理.拉曼光谱研究结果表明:电池在1000 h负偏压作用下,电解质中阳离子(Li+)会向光阳极(TiO2电极)移动并嵌入TiO2薄膜中;长期负偏压作用还会致使TiO2/电解质界面阻抗增大和IPCE下降,导致电池开路电压升高和短路电流减小.通过加入苯并咪唑(BI)添加剂,经1000 h负偏压后电池的拉曼光谱实验表明,BI能在一定程度阻碍Li+的嵌入,电池具有较好的长期稳定性.不同负偏压下的老化实验进一步表明,通过加入添加剂能够使电池在长期负偏压下保持较好的稳定性. 关键词: 染料敏化 太阳电池 组件 负偏压  相似文献   

17.
18.
采用强度调制光电流谱(IMPS)和强度调制光电压谱(IMVS)研究了染料敏化太阳电池(DSC)内部电子传输和背反应动力学特性.在纳米TiO2薄膜厚度相同的情况下,借助于IMPS/IMVS测量了由3种不同TiO2颗粒尺寸大小薄膜制备出DSC的电荷传输特征参数值.IMPS/IMVS理论模型拟合实验测量数据的结果表明:在不同入射光强下,随着颗粒尺寸的增大,电子扩散系数(Dn)增大,而电子寿命(τn 关键词: 染料敏化 太阳电池 IMPS/IMVS 电子传输  相似文献   

19.
有机共混结构叠层太阳电池的研究进展   总被引:1,自引:0,他引:1       下载免费PDF全文
於黄忠 《物理学报》2013,62(2):27201-027201
有机太阳电池由于质轻、价廉、柔性,受到人们的广泛关注.单个有机材料只能吸收部分太阳光,叠层结构的太阳电池将不同吸收带隙的有机材料通过中间层连接起来,既能充分吸收太阳光,又能提高太阳电池的开路电压或短路电流.本文综述了近年来有机共混结构叠层太阳电池的研究进展,介绍了各种叠层有机太阳电池的结构、原理及性能,阐述了国内外有机叠层太阳电池研究的现状及存在问题,为高性能有机太阳电池的研究提供有价值的参考.  相似文献   

20.
Optical and Quantum Electronics - Nowadays, world is moving from conventional energy sources to non-conventional energy sources like solar energy, wind power, hydropower and those energy sources...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号