共查询到20条相似文献,搜索用时 0 毫秒
1.
Alexandra R. Hyler Daly Hong Rafael V. Davalos Nathan S. Swami Eva M. Schmelz 《Electrophoresis》2021,42(12-13):1366-1377
Cell separation has become a critical diagnostic, research, and treatment tool for personalized medicine. Despite significant advances in cell separation, most widely used applications require the use of multiple, expensive antibodies to known markers in order to identify subpopulations of cells for separation. Dielectrophoresis (DEP) provides a biophysical separation technique that can target cell subpopulations based on phenotype without labels and return native cells for downstream analysis. One challenge in employing any DEP device is the sample being separated must be transferred into an ultralow conductivity medium, which can be detrimental in retaining cells’ native phenotypes for separation. Here, we measured properties of traditional DEP reagents and determined that after just 1–2 h of exposure and subsequent culture, cells’ viability was significantly reduced below 50%. We developed and tested a novel buffer (Cyto Buffer) that achieved 6 weeks of stable shelf-life and demonstrated significantly improved viability and physiological properties. We then determined the impact of Cyto Buffer on cells’ dielectric properties and morphology and found that cells retained properties more similar to that of their native media. Finally, we vetted Cyto Buffer's usability on a cell separation platform (Cyto R1) to determine combined efficacy for cell separations. Here, more than 80% of cells from different cell lines were recovered and were determined to be >70% viable following exposure to Cyto Buffer, flow stimulation, electromanipulation, and downstream collection and growth. The developed buffer demonstrated improved opportunities for electrical cell manipulation, enrichment, and recovery for next generation cell separations. 相似文献
2.
Jaemin An Jangwon Lee Sang Ho Lee Jungyul Park Byungkyu Kim 《Analytical and bioanalytical chemistry》2009,394(3):801-809
In this paper, we successfully separated malignant human breast cancer epithelial cells (MCF 7) from healthy breast cells
(MCF 10A) and analyzed the main parameters that influence the separation efficiency with an advanced dielectrophoresis (DEP)-activated
cell sorter (DACS). Using the efficient DACS, the malignant cancer cells (MCF 7) were isolated successfully by noninvasive
methods from normal cells with similar cell size distributions (MCF 10A), depending on differences between their material
properties such as conductivity and permittivity, because our system was able to discern the subtle differences in the properties
by generating continuously changed electrical field gradients. In order to evaluate the separation performance without considering
size variations, the cells collected from each outlet were divided into size-dependent groups and counted statistically. Following
that, the quantitative relative ratio of numbers between MCF 7 and MCF 10A cells in each size-dependent group separated by
the DEP were compared according to applied frequencies in the range 48, 51, and 53 MHz with an applied amplitude of 8 Vpp. Finally, under the applied voltage of 48 MHz–8 Vpp and a flow rate of 290 μm/s, MCF 7 and MCF 10A cells were separated with a maximum efficiency of 86.67% and 98.73% respectively.
Therefore, our suggested system shows it can be used for detection and separation of cancerous epithelial cells from noncancerous
cells in clinical applications. 相似文献
3.
Review of cell and particle trapping in microfluidic systems 总被引:2,自引:0,他引:2
J. Nilsson 《Analytica chimica acta》2009,649(2):141-695
The ability to obtain ideal conditions for well-defined chemical microenvironments and controlled temporal chemical and/or thermal variations holds promise of high-resolution cell response studies, cell-cell interactions or e.g. proliferation conditions for stem cells. It is a major motivation for the rapid increase of lab-on-a-chip based cell biology research. In view of this, new chip-integrated technologies are at an increasing rate being presented to the research community as potential tools to offer spatial control and manipulation of cells in microfluidic systems. This is becoming a key area of interest in the emerging lab-on-a-chip based cell biology research field. This review focuses on the different technical approaches presented to enable trapping of particles and cells in microfluidic system. 相似文献
4.
Dielectrophoresis‐assisted creation of cell aggregates under flow conditions using planar electrodes
Jonathan Cottet Alexandre Kehren Soufian Lasli Harald van Lintel Franois Buret Marie Frna‐Robin Philippe Renaud 《Electrophoresis》2019,40(10):1498-1509
We present a microfluidic platform allowing dielectrophoresis‐assisted formation of cell aggregates of controlled size and composition under flow conditions. When specific experimental conditions are met, negative dielectrophoresis allows efficient concentration of cells towards electric field minima and subsequent aggregation. This bottom‐up assembly strategy offers several advantages with respect to the targeted application: first, dielectrophoresis offers precise control of spatial cell organization, which can be adjusted by optimizing electrode design. Then, it could contribute to accelerate the establishment of cell‐cell interactions by favoring close contact between neighboring cells. The trapping geometry of our chip is composed of eight electrodes arranged in a circle. Several parameters have been tested in simulations to find the best configurations for trapping in flow. Those configurations have been tested experimentally with both polystyrene beads and human embryonic kidney cells. The final design and experimental setup have been optimized to trap cells and release the created aggregates on demand. 相似文献
5.
We describe the development and testing of a setup that allows for DEP field‐flow fractionation (DEP‐FFF) of irreversibly electroporated, reversibly electroporated, and nonelectroporated cells based on their different polarizabilities. We first optimized the channel and electrode dimensions, flow rate, and electric field parameters for efficient DEP‐FFF separation of moderately heat‐treated CHO cells (50°C for 15 min) from untreated ones, with the former used as a uniform and stable model of electroporated cells. We then used CHO cells exposed to electric field pulses with amplitudes from 1200 to 2800 V/cm, yielding six groups containing various fractions of nonporated, reversibly porated, and irreversibly porated cells, testing their fractionation in the chamber. DEP‐FFF at 65 kHz resulted in distinctive flow rates for nonporated and each of the porated cell groups. At lower frequencies, the efficiency of fractionation deteriorated, while at higher frequencies the separation of individual elution profiles was further improved, but at the cost of cell flow rate slowdown in all the cell groups, implying undesired transition from negative into positive DEP, where the cells are pulled toward the electrodes. Our results demonstrate that fractionation of irreversibly electroporated, reversibly electroporated, and nonelectroporated cells is feasible at a properly selected frequency. 相似文献
6.
Microfluidic device embedding electrodes realizes cell manipulation with the help of dielectrophoresis. Cell manipulation is an important technology for cell sorting and cell population purification. Till now, the theory of dielectrophoresis has been greatly developed. Microfluidic devices with various arrangements of electrodes have been reported from the beginning of the single non‐uniform electric field to the later multiple physical fields. This paper reviews the research status of microfluidic device embedding electrodes for cell manipulation based on dielectrophoresis. Firstly, the working principle of dielectrophoresis is explained. Next, cell manipulation approaches based on dielectrophoresis are introduced. Then, different types of electrode arrangements in the microfluidic device for cell manipulation are discussed, including planar, multilayered and microarray dot electrodes. Finally, the future development trend of the dielectrophoresis with the help of microfluidic devices is prospected. With the rapid development of microfluidic technology, in the near future, high precision, high throughput, high efficiency, multifunctional, portable, economical and practical microfluidic dielectrophoresis will be widely used in the fields of biology, medicine, agriculture and so on. 相似文献
7.
Dielectrophoretic separation of platelets from diluted whole blood in microfluidic channels 总被引:2,自引:0,他引:2
Pommer MS Zhang Y Keerthi N Chen D Thomson JA Meinhart CD Soh HT 《Electrophoresis》2008,29(6):1213-1218
The dielectrophoresis (DEP) phenomenon is used to separate platelets directly from diluted whole blood in microfluidic channels. By exploiting the fact that platelets are the smallest cell type in blood, we utilize the DEP-activated cell sorter (DACS) device to perform size-based fractionation of blood samples and continuously enrich the platelets in a label-free manner. Cytometry analysis revealed that a single pass through the two-stage DACS device yields a high purity of platelets (approximately 95%) at a throughput of approximately 2.2 x 10(4) cells/second/microchannel with minimal platelet activation. This work demonstrates gentle and label-free dielectrophoretic separation of delicate cells from complex samples and such a separation approach may open a path toward continuous screening of blood products by integrated microfluidic devices. 相似文献
8.
Dielectrophoresis is a versatile tool for the sorting, immobilization, and characterization of cells in microfluidic systems. The performance of dielectrophoretic systems strongly relies on the configuration of microelectrodes, which produce a nonuniform electric field. However, once fabricated, the microelectrodes cannot be reconfigured to change the characteristics of the system. Here, we show that the reorientation of the microfluidic channel with respect to the microelectrodes can be readily utilized to alter the characteristics of the system. This enables us to change the location and density of immobilized viable cells across the channel, release viable cells along customized numbers of streams within the channel, change the deflection pattern of nonviable cells along the channel, and improve the sorting of viable and nonviable cells in terms of flow throughput and efficiency of the system. We demonstrate that the reorientation of the microfluidic channel is an effective tool to create versatile dielectrophoretic platforms using the same microelectrode design. 相似文献
9.
Dielectrophoresis (DEP) is a non-destructive, accurate, and label-free cell manipulating technique and DEP applications have been found in various fields. Assessment of cell viability is one of the important applications and many investigations have been reported. In this paper, cell polarization and its modeling, some key parameters employed for living/dead cell separation, as well as electrode configurations are reviewed. Focus is given to the latest development of DEP devices employed for the assessment of cell viability. Experimentally determined factors for separating living/dead cells, such as the conductivity of suspending medium and the frequency of applied electric field, are summarized. The future directions and potential challenges in this field are also outlined. 相似文献
10.
Jun Yuan Chan Aminuddin Bin Ahmad Kayani Mohd Anuar Md Ali Chee Kuang Kok Muhamad Ramdzan Buyong Susan Ling Ling Hoe Marini Marzuki Alan Soo‐Beng Khoo Sharath Sriram Kostya Ostrikov 《Electrophoresis》2019,40(20):2728-2735
This paper presents the development and experimental analysis of a curved microelectrode platform for the DEP deformation of breast cancer cells (MDA‐MB‐231). The platform is composed of arrays of curved DEP microelectrodes which are patterned onto a glass slide and samples containing MDA‐MB‐231 cells are pipetted onto the platform's surface. Finite element method is utilised to characterise the electric field gradient and DEP field. The performance of the system is assessed with MDA‐MB‐231 cells in a low conductivity 1% DMEM suspending medium. We applied sinusoidal wave AC potential at peak to peak voltages of 2, 5, and 10 Vpp at both 10 kHz and 50 MHz. We observed cell blebbing and cell shrinkage and analyzed the percentage of shrinkage of the cells. The experiments demonstrated higher percentage of cell shrinkage when cells are exposed to higher frequency and peak to peak voltage electric field. 相似文献
11.
Concentration of biological specimens that are extremely dilute in a solution is of paramount importance for their detection. Microfluidic chips based on insulator-based DEP (iDEP) have been used to selectively concentrate bacteria and viruses. iDEP biochips are currently fabricated with glass or polymer substrates to allow for high electric fields within the channels. Joule heating is a well-known problem in these substrates and can lead to decreased throughput and even device failure. In this work, we present, for the first time, highly efficient trapping and separation of particles in DC iDEP devices that are fabricated on silicon using a single-etch-step three-dimensional microfabrication process with greatly improved heat dissipation properties. Fabrication in silicon allows for greater heat dissipation for identical geometries and operating conditions. The 3D fabrication allows for higher performance at lower applied potentials. Thermal measurements were performed on both the presented silicon chips and previously published PDMS devices comprised of microposts. Trapping and separation of 1 and 2 μm polystyrene particles was demonstrated. These results demonstrate the feasibility of high-performance silicon iDEP devices for the next generation of sorting and concentration microsystems. 相似文献
12.
Rupert S. W. Thomas Peter D. Mitchell Richard O. C Oreffo Hywel Morgan Nicolas G. Green 《Electrophoresis》2019,40(20):2718-2727
Microelectrode arrays are used to sort single fluorescently labeled cells and particles as they flow through a microfluidic channel using dielectrophoresis. Negative dielectrophoresis is used to create a “Dielectrophoretic virtual channel” that runs along the center of the microfluidic channel. By switching the polarity of the electrodes, the virtual channel can be dynamically reconfigured to direct particles along a different path. This is demonstrated by sorting particles into two microfluidic outlets, controlled by an automated system that interprets video data from a color camera and makes complex sorting decisions based on color, intensity, size, and shape. This enables the rejection of particle aggregates and other impurities, and the system is optimized to isolate high purity populations from a heterogeneous sample. Green beads are isolated from an excess of red beads with 100% purity at a rate of up to 0.9 particles per second, in addition application to the sorting of osteosarcoma and human bone marrow cells is evidenced. The extension of Dielectrophoretic Virtual Channels to an arbitrary number of sorting outputs is examined, with design, simulation, and experimental verification of two alternate geometries presented and compared. 相似文献
13.
We present a novel technique for continuous label‐free separation of particles based on their dielectrophoretic crossover frequencies. Our technique relies on our unique microfluidic geometry which performs hydrodynamic focusing, generates a stagnation flow with two outlets, and simultaneously produces an isomotive dielectrophoretic field via wall‐situated electrodes. To perform particle separation, we hydrodynamically focus particles onto stagnation streamlines and use isomotive dielectrophoretic force to nudge the particles off these streamlines and direct them into appropriate outlets. Focusing particles onto stagnation streamlines obviates the need for large forces to be applied to the particles and therefore increases system throughput. The use of isomotive (spatially uniform) dielectrophoretic force increases system reliability. To guide designers, we develop and describe a simple scaling model for the particle separation dynamics of our technique. The model predicts the range of particle sizes that can be separated as well as the processing rate that can be achieved as a function of system design parameters: channel size, flow rate, and applied potential. Finally, as a proof‐of‐principle, we use this technique to separate polystyrene bead and cell mixtures of the same diameters as well as mixtures of both particles with varying diameters. 相似文献
14.
Cinthia J. Ramirez-Murillo J. Martin de los Santos-Ramirez Victor H. Perez-Gonzalez 《Electrophoresis》2021,42(5):565-587
Dielectrophoretically driven microfluidic devices have demonstrated great applicability in biomedical engineering, diagnostic medicine, and biological research. One of the potential fields of application for this technology is in point-of-care (POC) devices, ideally allowing for portable, fully integrated, easy to use, low-cost diagnostic platforms. Two main approaches exist to induce dielectrophoresis (DEP) on suspended particles, that is, electrode-based DEP and insulator-based DEP, each featuring different advantages and disadvantages. However, a shared concern lies in the input voltage used to generate the electric field necessary for DEP to take place. Therefore, input voltage can determine portability of a microfluidic device. This review outlines the recent advances in reducing stimulation voltage requirements in DEP-driven microfluidics. 相似文献
15.
Nonlinear electrokinetics (EK), specifically electrophoresis of the second kind, dielectrophoresis (DEP) and electrorotation (EROT), have gained significant interest recently for their flexibility and labeless discriminant manner of operation. The current applications of these technologies are a clear advancement from what they were when first discovered, but also still show strong signs of future growth. The present review article presents a discussion of the current uses of microscale nonlinear EK technologies as analytical, sensing, and purification tools for microorganisms. The discussion is focused on some of the latest discoveries with various nonlinear EK microfluidic techniques, such as DEP particle trapping and EROT for particle assessments, for the analysis of microorganisms ranging from viruses to parasites. Along the way, special focus was given to key research articles from within the past two years to provide the most up-to-date knowledge on the current state-of-the-art within the field of microscale EK, and from there, an outlook on where the future of the field is headed is also included. 相似文献
16.
Mahyar Nasabi Khashayar Khoshmanesh Francisco J. Tovar‐Lopez Kourosh Kalantar‐zadeh Arnan Mitchell 《Electrophoresis》2013,34(22-23):3150-3154
This paper demonstrates the utilization of 3D semispherical shaped microelectrodes for dielectrophoretic manipulation of yeast cells. The semispherical microelectrodes are capable of producing strong electric field gradients, and in turn dielectrophoretic forces across a large area of channel cross‐section. The semispherical shape of microelectrodes avoids the formation of undesired sharp electric fields along the structure and also minimizes the disturbance of the streamlines of nearby passing fluid. The advantage of semispherical microelectrodes over the planar microelectrodes is demonstrated in a series of numerical simulations and proof‐of‐concept experiments aimed toward immobilization of viable yeast cells. 相似文献
17.
Meltem Elitas Yagmur Yildizhan Monsur Islam Rodrigo Martinez‐Duarte Didem Ozkazanc 《Electrophoresis》2019,40(2):315-321
Monocyte heterogeneity and its prevalence are revealed as indicator of several human diseases ranking from cardiovascular diseases to rheumatoid arthritis, chronic kidney diseases, autoimmune multiple sclerosis, and stroke injuries. When monocytes and macrophages are characterized and isolated with preserved genetic, phenotypic and functional properties, they can be used as label‐free biomarkers for precise diagnostics and treatment of various diseases. Here, the dielectrophoretic responses of the monocytes and macrophages were examined. We present 3D carbon‐electrode dielectrophoresis (carbon‐DEP) as a separation tool for U937 monocytes and U937 monocyte‐differentiated macrophages. The carbon‐electrodes advanced the usability and throughput of DEP separation, presented wider electrochemical stability. Using the 3D carbon‐DEP chip, we first identified the selective positive and negative DEP responses and specific crossover frequencies of monocytes and macrophages as their signatures for separation. The crossover frequency of monocytes and macrophages was 17 and 30 kHz, respectively. Next, we separated monocyte and macrophage subpopulations using their specific dielectrophoretic responses. Afterward, we used a fluorescence‐activated cell sorter to confirm our results. Finally, we enriched 70% of monocyte cells from the mixed cell population, in other words, concentration of monocyte cells to macrophage cells was five times increased, using the 30‐kHz, 10‐Vpp electric field and 1 μL/min flow rate. 相似文献
18.
The 20th century has seen tremendous innovation of dielectrophoresis (DEP) technologies, with applications being developed in areas ranging from industrial processing to micro- and nanoscale biotechnology. From 2010 to present day, there have been 981 publications about DEP. Of over 2600 DEP patents held by the United States Patent and Trademark Office, 106 were filed in 2019 alone. This review focuses on DEP-based technologies and application developments between 2010 and 2020, with an aim to highlight the progress and to identify potential areas for future research. A major trend over the last 10 years has been the use of DEP techniques for biological and clinical applications. It has been used in various forms on a diverse array of biologically derived molecules and particles to manipulate and study them including proteins, exosomes, bacteria, yeast, stem cells, cancer cells, and blood cells. DEP has also been used to manipulate nano- and micron-sized particles in order to fabricate different structures. The next 10 years are likely to see the increase in DEP-related patent applications begin to result in a greater level of technology commercialization. Also during this time, innovations in DEP technology will likely be leveraged to continue the existing trend to further biological and medical-focused applications as well as applications in microfabrication. As a tool leveraged by engineering and imaginative scientific design, DEP offers unique capabilities to manipulate small particles in precise ways that can help solve problems and enable scientific inquiry that cannot be addressed using conventional methods. 相似文献
19.
Boonchai Techaumnat Nitipong Panklang Anurat Wisitsoraat Yuji Suzuki 《Electrophoresis》2020,41(10-11):991-1001
This paper presents the application of the discrete dielectrophoretic force to separate polystyrene particles from red blood cells. The separation process employs a simple microfluidic device that is composed of interdigitated electrodes and a microchannel. The discrete dielectrophoretic force is generated by adjusting the duty cycle of the applied voltage. The electrodes make a tilt angle with the microchannel to change the moving direction of the red blood cells. By adjusting the voltage magnitude and duty cycle, we investigate the deflection of red blood cells and the variation of cell velocity along electrode edge under positive dielectrophoresis. The experiments with polystyrene particles show that the enrichment of the particles is greater than 150 times. The maximum separation efficiency is 97% for particle-to-cell number ratio equal to 1:2000 in the sample having high cell concentration. Using the appropriate applied voltage magnitude and duty cycle, the discrete dielectrophoretic force can prevent the clogging of microchannel while successfully separating the particles from the cells with high enrichment and efficiency. The proposed principle can be readily applied to dielectrophoresis-based devices for biomedical sample preparation or diagnosis such as the separation of rare or infected cells from a blood sample. 相似文献
20.
Mario A. Saucedo‐Espinosa Alexandra LaLonde Aytug Gencoglu Maria F. Romero‐Creel Jay R. Dolas Blanca H. Lapizco‐Encinas 《Electrophoresis》2016,37(2):282-290
A novel scheme for particle separation with insulator‐based dielectrophoresis (iDEP) was developed. This technique offers the capability for an inverted order in particle elution, where larger particles leave the system before smaller particles. Asymmetrically shaped insulating posts, coupled with direct current (DC) biased low‐frequency alternating current (AC) electric potentials, were used to successfully separate a mixture of 500 nm and 1 μm polystyrene particles (size difference of 0.5 μm in diameter). In this separation, the 1 μm particles were eluted first, demonstrating the discriminatory potential of this methodology. To extend this technique to biological samples, a mixture containing Saccharomyces cerevisiae cells (6.3 μm) and 2 μm polystyrene particles was also separated, with the cells being eluted first. The asymmetric posts featured a shorter sharp half and a longer blunt half; this produced an asymmetry in the forces exerted on the particles. The negative DC offset produced a net displacement of the smaller particles toward the upstream direction, while the post asymmetry produced a net displacement of the larger particles toward the downstream direction. This new iDEP approach provides a setup where larger particles are quickly concentrated at the outlet of the post array and can be released first when in a mixture with smaller particles. This new scheme offers an extra set of parameters (alternating current amplitude, DC offset, post asymmetry, and shape) that can be manipulated to obtain a desired separation. This asymmetric post iDEP technique has potential for separations where it is important to quickly elute and enrich larger and more fragile cells in biological samples. 相似文献