首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Zinc oxide nanotube (ZNT) arrays were grown on Si/Ag substrate by one-step chemical process in an aqueous solution and further used as a working electrode to fabricate an enzyme-based cholesterol biosensor through immobilization of cholesterol oxidase (ChOx). The fabricated biosensors exhibit high and reproducible sensitivity of 79.40 μA/mM/cm2, wide linear range from 1.0 μM to 13.0 mM, fast response time of ~ 2 s and ultra-low detection limit of 0.5 nM (S/N = 3) for cholesterol sensing. The anti-interference ability and long-term stability of the biosensor were also assessed. Finally, the biosensor was applied to analyze cholesterol concentration in human serum samples.  相似文献   

2.
In this work, a new biosensor was prepared through immobilization of bovine liver catalase in a photoreticulated poly (vinyl alcohol) membrane at the surface of a conductometric transducer. This biosensor was used to study the kinetics of catalase–H202 reaction and its inhibition by cyanide. Immobilized catalase exhibited a Michaelis–Menten behaviour at low H202 concentrations (< 100 mM) with apparent constant KMapp = 84 ± 3 mM and maximal initial velocity VMapp = 13.4 μS min? 1. Inhibition by cyanide was found to be non-competitive and inhibition binding constant Ki was 13.9 ± 0.3 μM. The decrease of the biosensor response by increasing cyanide concentration was linear up to 50 μM, with a cyanide detection limit of 6 μM. In parallel, electrochemical characteristics of the catalase/PVA biomembrane and its interaction with cyanide were studied by cyclic voltammetry and impedance spectroscopy. Addition of the biomembrane onto the gold electrodes induced a significant increase of the interfacial polarization resistance RP. On the contrary, cyanide binding resulted in a decrease of Rp proportional to KCN concentration in the 4 to 50 μM range. Inhibition coefficient I50 calculated by this powerful label-free and substrate-free technique (24.3 μM) was in good agreement with that determined from the substrate-dependent conductometric biosensor (24.9 μM).  相似文献   

3.
A novel strategy based on the Ugi multicomponent reaction was employed for immobilizing horseradish peroxidase on sodium alginate-coated gold electrode. The electrode was employed for constructing an amperometric biosensor device using 1 mM hydroquinone as electrochemical mediator. The electrode showed linear response (poised at −300 mV vs Ag/AgCl) toward H2O2 concentration between 70 μM and 8.8 mM at pH 7.0. The biosensor reached 95% of steady-state current in about 12 s and its sensitivity was 33.8 mA/M cm2. The electrode retained full initial activity after 30 days of storage at 4 °C in 50 mM sodium phosphate buffer, pH 7.0.  相似文献   

4.
A novel amperometric glucose biosensor was developed by entrapping glucose oxidase (GOD) in chitosan (CS) composite doped with ferrocene monocarboxylic acid-modified magnetic core-shell Fe3O4@SiO2 nanoparticles (FMC-AFSNPs). It is shown that the obtained magnetic bio-nanoparticles attached to the surface of a carbon paste electrode (CPE) with the employment of a permanent magnet showed excellent electrochemical characteristics and at the same time acted as mediator to transfer electrons between the enzyme and the electrode. Under optimal conditions, this biosensor was able to detect glucose in the linear range from 1.0 × 10−5 to 4.0 × 10−3 M with a detection limit of 3.2 μM (S/N = 3). This immobilization approach effectively improved the stability of the electron transfer mediator and is promising for construction of biosensor and bioelectronic devices.  相似文献   

5.
In this paper, a novel biosensor was prepared by immobilizing glucose oxidase (GOx) on carbon nanotube-gold-titania nanocomposites (CNT/Au/TiO2) modified glassy carbon electrode (GCE). SEM was initially used to investigate the surface morphology of CNT/Au/TiO2 nanocomposites modified GCE, indicating the formation of the nano-porous structure which could readily facilitate the attachment of GOx on the electrode surface. Cyclic voltammogram (CV) and electrochemical impedance spectrum (EIS) were further utilized to explore relevant electrochemical activity on CNT]Au/TiO2 nanocomposites modified GCE. The observations demonstrated that the immobilized GOx could efficiently execute its bioelectrocatalytic activity for the oxidation of glucose. The biosensor exhibited a wider linearity range from 0.1 mmol L-1 to 8 mmol L^-1 glucose with a detection limit of 0.077 mmol L^- 1.  相似文献   

6.
Xathine oxidase was chemically modified with β-cyclodextrin-branched carboxymethylcellulose and further supramolecularly immobilized on a gold electrode, previously coated with a monolayer of 1-adamantanyl residues. The electrode was employed for constructing an amperometric biosensor device, which showed linear response (poised at +700 mV vs. Ag/AgCl) toward xanthine concentration between 300 μM and 10.4 mM at pH 7.0. The biosensor reached 95% of steady-state current in about 14 s and its sensitivity was 8.2 mA/M cm2. The enzyme electrode retained 93% of its initial activity after 3 weeks of storage at 4 °C in 50 mM sodium phosphate buffer, pH 7.0. The supramolecular nature of the immobilization approach was confirmed by cyclic voltammetry.  相似文献   

7.
A high-sensitive cholesterol amperometric biosensor based on the immobilization of cholesterol oxidase (ChOx) onto the ZnO nanoparticles has been fabricated which shows a very high and reproducible sensitivity of 23.7 μA mM?1 cm?2, detection limit (based on S/N ratio) 0.37 ± 0.02 nM, response time less than 5 s, linear range from 1.0 to 500.0 nM and correlation coefficient of R = 0.9975. A relatively low value of enzyme’s kinetic parameter (Michaelis–Menten constant) ~4.7 mM has been obtained which indicates the enhanced enzymatic affinity of ChOx to Cholesterol. To the best of our knowledge, this is the first report in which such a very high-sensitivity and low detection limit has been achieved for the cholesterol biosensor by using ZnO nanostructures modified electrodes.  相似文献   

8.
We investigated the direct electrochemistry of glucose oxidase (GOx) at gelatin-multiwalled carbon nanotube (GCNT) modified glassy carbon electrode (GCE). GOx was covalently immobilized onto GCNT modified GCE through the well known glutaraldehyde (GAD) chemistry. The immobilized GOx showed a pair of well-defined reversible redox peaks with a formal potential (E0′) of ? 0.40 V and a peak to peak separation (ΔEp) of 47 mV. The surface coverage concentration (Г) of GOx in GCNT/GOx/GAD composite film modified GCE was 3.88 × 10? 9 mol cm? 2 which indicates the high enzyme loading. The electron transfer rate constant (ks) of GOx immobilized onto GCNT was 1.08 s? 1 which validates a rapid electron transfer processes. The composite film shows linear response towards 6.30 to 20.09 mM glucose. We observed a good sensitivity of 2.47 μA mM?1 cm? 2 for glucose at the composite film. The fabricated biosensor displayed two weeks stability. Moreover, it shows no response to 0.5 mM of ascorbic acid (AA), uric acid (UA), acetaminophen (AP), pyruvate (PA) and lactate (LA) which shows its potential application in the determination of glucose from human serum samples. The composite film exhibits excellent recovery for glucose in human serum at physiological pH with good practical applicability.  相似文献   

9.
A new type of amperometric hydrogen peroxide biosensor was fabricated by entrapping horseradish peroxidase (HRP) in the organic–inorganic hybrid material composed of zirconia–chitosan sol–gel and Au nanoparticles (ZrO2–CS–AuNPs). The sensitivity of the biosensor was enhanced by a flowerlike polymer–copper nanostructure composite (pPA–FCu) which was prepared from co-electrodeposition of CuSO4 solution and 2,6-pyridinediamine solution. Several techniques, including UV–vis absorption spectroscopy, scanning electron microscopy, cyclic voltammetry, chronoamperometry and electrochemical impedance spectroscopy were employed to characterize the assembly process and performance of the biosensor. The results showed that this pPA–FCu nanostructure not only had excellent redox electrochemical activity, but also had good catalytic efficiency for hydrogen peroxide. Also the ZrO2–CS–AuNPs had good film forming ability, high stability and good retention of bioactivity of the immobilized enzyme. The resulting biosensors showed a linear range from 7.80 × 10?7 to 3.7 × 10?3 mol L?1, with a detection limit of 3.2 × 10?7 mol L?1 (S/N = 3) under optimized experimental conditions. The apparent Michaelis–Menten constant was determined to be 0.32 mM, showing good affinity. In addition, the biosensor which exhibits good analytical performance, acceptable stability and good selectivity, has potential for practical applications.  相似文献   

10.
A sensitive method for simultaneous determination of six phenolic whitening agents,including arbutin, phenol,resorcinol,hydroquinone,kojic acid,and salicylic acid in cosmetics has been developed using micellar electrokinetic capillary chromatography with amperometric detection(MECC-AD).Effects of several factors,such as the pH value and concentration of running buffer,potential applied to the working electrode,separation voltage,and injection time were investigated to obtain optimum conditions for separation and detection.With a 75 cm long fused-silica capillary tube,well-defined separation of six phenolic compounds was achieved in 10mmol/L SDS/40 mmol/L H3BO3-Na2B4O7 running buffer(pH 9.0).Good linear relationship was obtained for each analyte over three orders of magnitude with correlation coefficients(r2) between 0.9985 and 0.9994,and the detection limit(S/N=3) ranged from 0.04μg/mL to 0.45μg/mL The proposed method has been successfully applied for the determination of phenolic whitening agents in real cosmetic samples with satisfactory results,providing an alternative monitoring method for cosmetics safety regulation.  相似文献   

11.
Gold nanorods (GNRs) were synthesized by a seed–mediated growth approach followed by TEOS polymerization leading to the formation of silica layer surrounding the gold nanorod core. TEM images showed that the silica-coated gold nanorods (GNRs@SiO2) were dispersed with an average aspect ratio of 3.1 for the GNRs cores and a uniform thickness of the silica shell. The core/shell nanocomposites were further used as efficient supports for the immobilization of hemoglobin (Hb) to fabricate a novel biosensor. The immobilized Hb showed an enhanced electron transfer for its heme Fe(III) to Fe(II) redox couple. This biosensor showed an excellent bioelectrocatalytic activity towards H2O2 with a linear range from 8.0 × 10−7 to 6.1 × 10−5 M, and the detection limit was 6.0 × 10−8 M at 3σ. The apparent Michaelis–Menten constant of the immobilized hemoglobin was calculated to be 0.13 mM.  相似文献   

12.
In this study, we report the fabrication of the indium tin oxide (ITO) glass electrode modified with iron oxide nanoparticles (IONPs) and nafion for glucose biosensor applications. The IONPs was synthesized using the precipitation method and functionalized with citric acid (CA) to provide hydrophilic surface and functional group for glucose oxidase (GOx) enzyme immobilization. The structural and morphological studies of CA-IONPs were characterized using X-ray diffractometer (XRD) and transmission electron microscope (TEM). The size of the IONPs measured from TEM image was ∼17 nm. The bioelectrode designated as Nafion/GOx/CA-IONPs/ITO was developed by drop casting of the CA-IONPs, GOx and nafion on the ITO glass. The Nafion/GOx/CA-IONPs/ITO bioelectrode showed good electrochemical performance for glucose detection. The functionalized CA-IONPs acted as the catalyst and help to improve the electron transfer rate between GOx and ITO electrode. In addition, thin nafion film was coated on the electrode to prevent interference and improve chemical stability. The Nafion/GOx/CA-IONPs/ITO bioelectrode showed high sensitivity of 70.1 μAmM-1cm-2 for the linear range of 1.0-8.0 mM glucose concentrations.  相似文献   

13.
The carbene complex [Pd0(NHC)(quinone)]2with NHC = 1,3-bis(2,4,6-trimethylphenyl)-imidazol-2-ylidene and quinone = 1,4-naphthoquinone shows two long-wavelength absorptions at 312 and 399 nm which are assigned to (NHC→quinone) LLCT and (Pd0  quinone) MLCT transitions. The MLCT state is not reactive, but emissive (λmax = 564 nm at 77 K). At r.t., the complex undergoes a photoredox decomposition which is initiated by the LLCT state.  相似文献   

14.
The present work is dedicated to making the best of vertically-aligned TiO2 nanotubes (TNTs) array to serve as a prospectively ideal “vessel” for protein immobilization and biosensor applications. The TNTs fabricated by electrochemical anodizing possess the advantageous of perpendicular alignment and tailored tubular architecture, as well as the good biocompatibility and hydrophilicity. But the electron-transfer resistance of the as-grown (AG-) TNTs is too large for the direct electron transfer and electrochemical biosensing. A simple strategy on controllable electrochemical reduction treatment of TNTs is adopted on it, leading TNTs in situ self-doped with Ti(III), which makes the Ti(III)–TNTs much better conductivity while the tubular and crystal structure of TNTs array still well maintained. Results show that the TNTs can be used as a super vessel for rapid and substantive immobilization of hemoglobin (Hb), with a large surface electroactive Hb coverage (Γ*) of 1.5 × 10?9 mol cm?2. The enhanced direct electron transfer of Hb is commendably observed on the Ti(III)–TNTs/Hb biosensor with a couple of well-defined redox peaks compared with the AG-TNTs/Hb. The biosensor further exhibits fast response, high sensitivity and stability for the amperometric biosensing of H2O2 with the detection limit of 1.5 × 10?6 M, and the apparent Michaelis–Menten constant of 1.02 mM.  相似文献   

15.
This study demonstrates a new kind of single-walled carbon nanotubes (SWNT)-based compartment-less glucose/O2 biofuel cell (BFC) with glucose dehydrogenase (GDH) and bilirubin oxidase (BOD) as the anodic and cathodic biocatalysts, respectively, and with poly(brilliant creysl blue) (BCB) adsorbed onto SWNT nanocomposite as the electrocatalyst for the oxidation of NADH. The prepared GDH-polyBCB-SWNT bioanode exhibits an excellent electrocatalytic activity toward the oxidation of glucose biofuel; in 0.10 M phosphate buffer containing 20 mM NAD+ and 100 mM glucose, the oxidation of glucose commences at −0.25 V and the current reaches its maximum of 310 μA/cm2 at −0.05 V vs. Ag/AgCl. At the BOD-SWNT biocathode, a high potential output is achieved for the reduction of O2 due to the direct electron transfer property of BOD at the SWNTs. In 0.10 M phosphate buffer, the electrocatalytic reduction of O2 is observed at a high potential of 0.53 V vs. Ag/AgCl with an electrocatalytic current plateau of ca. 28 μA/cm2 at 0.45 V under ambient air and ca. 102 μA/cm2 under O2-saturated atmosphere. In 0.10 M phosphate buffer containing 10 mM NAD+ and 40 mM glucose under O2-saturated atmosphere, the power density of the assembled SWNT-based glucose/O2 BFC reaches 53.9 μW/cm2 at 0.50 V. The performance and the stability of the glucose/O2 BFC are also evaluated in serum. This study could offer a new route to the development of new kinds of enzymatic BFCs with a high performance and provide useful information on future studies on the enzymatic BFCs as in vivo power sources.  相似文献   

16.
MgO polyhedral nanocages and nanocrystals, synthesized by non-catalytic simple thermal evaporation process, were used to fabricate high-sensitive amperometric glucose biosensor which showed a high and reproducible sensitivity of 31.6 μA μM?1 cm?2 with a response time less than 5 s, linear dynamic range from 1.0 to 9.0 μM and correlation coefficient of R = 0.9993. The detection limit of fabricated biosensor (based on S/N ratio = 3) was estimated to be 68.3 ± 0.02 nM. To the best of our knowledge, this is the first report which demonstrates the use of MgO nanostructures for the fabrication of glucose biosensor; hence, this work opens a new way to utilize MgO nanostructures as an efficient electron mediator to fabricate efficient glucose biosensors.  相似文献   

17.
The reaction of carbonate radical with phenol in aqueous solution has been investigated in systems in which carbonate radicals were generated by UV irradiation of an aqueous solution of [Co(NH3)5CO3]+ (pH 8.0 phosphate buffer). Both steady state and time resolved photolysis experiments were performed. Upon continuous irradiation of complex phenol mixtures, phenol was converted into benzoquinone and dihydroxybenzenes. Benzoquinone was the major by-product in the early stages of the reaction. Laser flash excitation (266 and 355 nm) of the cobalt complex clearly showed the formation of the carbonate radical. When phenol was added to the solution of the complex, a second species was observed which was assigned to the phenoxyl radical. The second-order rate constant of reaction between phenol and carbonate radical was found to be equal to 1.6 × 107 M−1 s−1, in agreement with literature data of 2.2 × 107 M−1 s−1.  相似文献   

18.
Amperometric enzyme biosensor based on the glucose oxidase (GOx) incorporated polyaniline nanowires (PANI-NWs) on carbon cloth (CC) electrode was demonstrated. The simple, direct-growth of PANI-NWs on CC, via electrochemical polymerization, provides free-standing, template-independent, hence almost (interfacial) defects-free nanostructures. The defect-free interfaces, along with the excellently sensitive organic nanostructured-surface, as evident from its significantly large effective surface area (24 times the geometric area) for redox-sensing, allows efficient entrapment/immobilization and sensing of biomolecules, via rapid electron-transfer at NWs-CC. The GOx-immobilized PANI-NWs/CC, even in initial unoptimized stage, exhibited an excellent sensitivity, ~2.5 mA mM?1 cm?2, to glucose, over detection range 0–8 mM, adequate for clinical monitoring of human glucose levels. The report clearly reveals a cost-effective simple system possessing enormous potentiality for biosensors, bioenergy and bioelectronics applications.  相似文献   

19.
An interesting mode of reactivity of MnO2 nanoparticles modified electrode in the presence of H2O2 is reported. The MnO2 nanoparticles modified electrodes show a bi-direction electrocatalytic ability toward the reduction/oxidation of H2O2. Based on this property, a choline biosensor was fabricated via a direct and facile electrochemical deposition of a biocomposite that was made of chitosan hydrogel, choline oxidase (ChOx) and MnO2 nanoparticles onto a glassy carbon (GC) electrode. The biocomposite is homogeneous and easily prepared and provides a shelter for the enzyme to retain its bioactivity. The results of square wave voltammetry showed that the electrocatalytic reduction currents increased linearly with the increase of choline chloride concentration in the range of 1.0 × 10−5 –2.1 × 10−3 M and no obvious interference from ascorbic acid and uric acid was observed. Good reproducibility and stability were obtained. A possible reaction mechanism was proposed.  相似文献   

20.
Poly (neutral red) nanowires (PNRNWs) have been synthesized for the first time by the method of cyclic voltammetric electrodeposition using porous anodic aluminum oxide (AAO) template and were examined by scanning electron microscopy (SEM) and transmission electron microscope (TEM). Moreover, horseradish peroxidase (HRP) was encapsulated in situ in PNRNWs (denoted as PNRNWs–HRP) by electrochemical copolymerization for potential biosensor applications. The PNRNWs showed excellent efficiency of electron transfer between the HRP and the glassy carbon (GC) electrode for the reduction of H2O2 and the PNRNWs–HRP modified GC electrode showed to be excellent amperometric sensors for H2O2 at −0.1 V with a linear response range of 1 μM to 8 mM with a correlation coefficient of 0.996. The detection limit (S/N = 3) and the response time were determined to be 1 μM and <5 s and the high sensitivity is up to 318 μA mM−1 cm−2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号