首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In order to study the decontamination nature of the reactive extraction of uranium in the presence of some metal chemicals using a single-phase mixture of HNO(3), H(2)O and tri-n-butylphosphate (TBP) in supercritical carbon dioxide (SC-CO(2)), we measured the decontamination factors (DFs) of Sr, Zr, Mo, Ru, Pd, Ce and Nd from their mixture with U. These elements were originally added to U(3)O(8) as SrO, ZrO(2), MoO(3), RuO(2), Pd, CeO(2) and Nd(2)O(3), and the extraction was performed at 18 MPa and 323 K with the single-phase mixture. The DFs for these elements were determined to be greater than 10(3) when the molecular ratio of U to TBP in the extracted complex was greater than 0.3. Dilution by SC-CO(2) effectively increased the DFs.  相似文献   

2.
A highly sensitive, selective and rapid method for the determination of cobalt based on the rapid reaction of cobalt(II) with 5-(2-benzothiazolylazo)-8-hydroxyquinolene BTAHQ and the solid phase extraction of the Co(II)-BTAHQ complex with C18 membrane disks were developed. In the presence of pH = 6.4 buffer solution and cetylpyridenium chloride (CPC) medium, BTAHQ reacts with cobalt to form a deep violet complex with a molar ratio of 1:1 (cobalt to BTAHQ). This complex was enriched by the solid phase extraction with C18 membrane disks. An enrichment factor of 100 was obtained by elution of the complex from the disks with a minimal amount of isopentyl alcohol. In isopentyl alcohol medium, the molar absorptivity of the complex is 2.42 × 105 L mol−1 cm−1 at 658 nm. Beer’s law is obeyed in the range of 0.01–0.38 μg mL−1 in the measured solution. The relative standard deviation for 11 replicate samples of 0.20 μg mL−1 level is 1.37%. The detection and quantification limits reach 3.1 and 9.7 ng mL−1 in the original samples. This method was applied for the determination of cobalt in biological, water, soil and pharmaceutical preparation samples with good results.  相似文献   

3.
This paper describes a novel strategy for actinide separation by extraction chromatography with Np(III) valence adjustment. Neptunium(IV) was reduced to Np(III) using Cr(II) and then selectively separated from uranium (IV) on a TEVA resin. After elution, Np(III) was retained on a DGA resin in order to remove any detrimental chromium impurities. Neptunium(III) formation was demonstrated by the complete and selective elution of Np from TEVA resin (99 ± 7%) in less than 12 mL of 9 M HCl from U(IV) (0.7 ± 0.7%). It was determined by UV–visible and kinetic studies that Cr(II) was the only species responsible for the elution of Np(IV) as Np(III) and that the Cr(II) solution could be prepared from 2 to 30 min before its use without the need of complex degassing systems to prevent the oxidation of Np(III) by oxygen. The methodology proposed here with TEVA/DGA resins provides removal of Cr(III) impurities produced at high decontamination factors (2.8 × 103 and 7.3 × 104 respectively).  相似文献   

4.
The thermal decomposition of urania-ceria gel corresponding to the composition U(0.7)Ce(0.3)O(2+x) obtained through external and internal gelation routes were studied using infrared spectroscopy (IR). In the case of externally gelated compound, the gel decomposes with the release of H2O and NH3 below 500 degrees C. A part of the NH3 released is entrapped in the solid and above 500 degrees C self reduction occurs in which U(VI) in the gel is reduced to U3O8. The decomposition products were identified to be U3O8 and CeO2. In the case of internally gelated compound, decomposition similar to the one for externally gelated compound occurred below 500 degrees C. Above 500 degrees C the carbon present in the gel reduced U(VI) to UO2 which formed solid solution with CeO2 around 650 degrees C.  相似文献   

5.
Cerium based nickel catalysts synthesized by impregnation method have been characterized by XRD and TEM techniques. These catalysts can be described as a mixture of nickel oxide and ceria modified by the insertion of a part of nickel in the ceria lattice. The surface and catalytic properties of Ni/Ce mixed oxide solids were determined by nitrogen adsorption at 77 K and catalytic conversion of isopropanol at different temperatures.The results revealed that the heat treatment brought about different modifications in the structural, morphological, surface and catalytic properties of the as synthesized catalysts. From the characterization of the as prepared catalysts, it was concluded that the as prepared catalysts contain highly dispersed NiO, well crystalline NiO and CeO2 and also Ni–Ce–O solid solution. This treatment led to a slightly increase in the crystallite size of ceria particles. On the other hand, the increase in the heat treatment resulted in an increase in the crystallite size, lattice constant and unit cell volume of nickel oxide. The formation of Ni–Ce–O solid solution with subsequent creation of oxygen vacancies increase as the heat treatment increases. However, the specific surface area, total pore volume and catalytic activity of the investigated system decrease as the preparation temperature increases from 500 to 700 °C. The sintering activation energy of NiO and ceria were found to be 2.8 and 12.7 kJ/mol, respectively.  相似文献   

6.
A method based on hollow fiber liquid phase microextraction (HF-LPME) for analysis of pinic acid and pinonic acid was developed and for the first time successfully applied to ambient aerosol samples. In this method, the aerosol samples were dissolved in 0.05 M H2SO4 and the solution was extracted using three-phase HF-LPME where donor phase was 0.1 M (NH4)2CO3. Different parameters like type of organic solvent for membrane phase, extraction time and stirring speed etc. were optimized. Optimum extraction time was 4.5 h and optimum-stirring speed was found to be 900 rpm. We used 6-undecanone as organic phase along with tri-n-octylphosphine oxide (optimum TOPO contents was 15% w/v), which gave an enormous enrichment for both pinic and pinonic acid. Enrichment factors of 28,050 and 27,400 times were obtained for pinonic acid and pinic acid, respectively, that are the highest ever published. The extraction efficiency for pinic acid and pinonic acid were 68.5% and 70.1%, respectively. Very low limits of detection were obtained. Values of 1.0 ng L?1 and 0.5 ng L?1 in aqueous solutions, corresponding to 24 pg m?3 and 12 pg m?3 in aerosol samples were the limits of detections for pinonic acid and pinic acid, respectively. Both pinonic acid and pinic acid were found in all aerosol samples analyzed.  相似文献   

7.
Gamma radiation induced decoloration and degradation of aqueous solution of Reactive Red 120 dye (RR-120) have been investigated under different experimental conditions. Rate constants for the reaction of hydrated electron and hydroxyl radical with RR-120 were determined to be 1.2×1010 and 7.9×109 mol?1 dm3 s?1, respectively, by pulse radiolysis technique. The decoloration and degradation efficiency were measured in terms of % decoloration and % TOC, respectively. Decoloration was observed to be most efficient under reducing condition, where the radiolytic yield for the decoloration of dye was determined to be 0.14 μmol/J. The extent of decoloration for both aerated and oxygen saturated solution was almost identical, whereas it decreased in N2O saturated solution as well as N2 saturated solution. For a solution having 10.56 μg/ml total organic carbon (TOC) at a dose of 3 kGy, 48% mineralization takes place in oxygen saturated solution whereas under aerated condition same was observed to be lowered to 38%.  相似文献   

8.
A new organophosphonate ligand containing sulfide group, 4-pyridylthioethylphosphonic acid hydrobromide (H2pytep·HBr), is synthesized through a facile route. Two zinc complexes of Zn2(pytepH2)2Br4 (1) and [Zn(pytep)]·H2O (2) are obtained by reacting H2pytep·HBr with zinc nitrate in solution and under hydrothermal condition, respectively. X-ray crystallographic studies reveal that 1 has a dinuclear structure in which the equivalent Zn atoms are doubly bridged by phosphonate groups. Compound 2 has a layer structure where ladder-like chains made up of corner-sharing {ZnNO3} and {CPO3} tetrahedra are linked by the organic groups of pytep. Photoluminescent properties are investigated. Different from complex 1 which shows no photoluminescence, complex 2 exhibits photoluminescence at 468 nm (λex = 353 nm) in the solid state at room temperature.  相似文献   

9.
Water activities in the ternary system (CaCl2 + SrCl2 + H2O) and its sub-binary system (CaCl2 + H2O) at T = 298.15 K have been elaborately measured by an isopiestic method. The data of the measured water activity were used to justify the reliability of solubility isotherms reported in the literature by correlating them with a thermodynamic Pitzer–Simonson–Clegg (PSC) model. The model parameters for representing the thermodynamic properties of the (CaCl2 + H2O) system from (0 to 11) mol  kg−1 at T = 298.15 K were determined, and the experimental water activity data in the ternary system were compared with those predicted by the parameters determined in the binary systems. Their agreement indicates that the PSC model parameters can reliably represent the properties of the ternary system. Under the assumption that the equilibrium solid phases are the pure solid phases (SrCl2  6H2O and CaCl2  6H2O)(s) or the ideal solid solution consisting of CaCl2  6H2O(s) and SrCl2  6H2O(s), the solubility isotherms were predicted and compared with experimental data from the literature. It was found that the predicted solubility isotherm agrees with experimental data over the entire concentration range at T = 298.15 K under the second assumption described above; however, it does not under the first assumption. The modeling results reveal that the solid phase in equilibrium with the aqueous solution in the ternary system is an ideal solid solution consisting of SrCl2  6H2O(s) and CaCl2  6H2O(s). Based on the theoretical calculation, the possibility of the co-saturated points between SrCl2  6H2O(s) and the solid solution (CaCl2  6H2O + SrCl2  6H2O)(s) and between CaCl2  6H2O(s) and the solid solution (CaCl2  6H2O + SrCl2  6H2O)(s), which were reported by experimental researchers, has been discussed, and the Lippann diagram of this system has been presented.  相似文献   

10.
《Chemical physics letters》2006,417(1-3):137-142
The aim of the Letter is to elucidate the nature of metal-support interaction in the 2 wt% Rh/Al2O3 catalyst obtained by annealing Rh–O–Al xerogel at 1113 K in air.XPS, HRTEM, and XRD results reveal that during the Rh–O–Al xerogel annealing in air, rhodium incorporates into forming alumina, which results mostly in Rh4+/δ-Al2O3 solid solution formation.However, in the course of the catalyst reduction at 773 with H2 and at 823 K with CH4 the Rh4+/δ-Al2O3 solid solution transforms into Rh–Al alloy. The islands of rhodium form on the surface of the Rh–Al alloy nanocrystallites if the reduction is slow enough.  相似文献   

11.
The object of this work is to develop a simple and selective method for efficient extraction of Au(III) ions in aqueous solution using a new solid-phase extraction sorbent. Polyethylenimine (PEI) ion-exchange polymer was coated on alumina in the presence of NaNO3. The method is based on sorption of Au3+ ions on 50 mg PEI/Al2O3. A solution of 0.5 M thiourea, then 1.0 M HCl effectively eluted the gold ion and then aspirated into flame atomic absorption spectroscopy (FAAS). The influence of flow rate of sample solution and eluent, the pH effect, eluent type and sorption capacity was investigated. The effects of various diverse ions for preconcentration and separation of the gold ion were investigated. Relative standard deviation of 4.0 μg mL−1 of gold was 1.46% (n = 10). The detection limit was 26.2 ng L−1 in original solution. The method has been applied successfully for the recovery of trace amount of Au(III) ions from water samples.  相似文献   

12.
The whole range of solid solutions Li(Li(1−x)/3CoxMn(2−2x)/3)O2 (0  x  1) was firstly synthesized by an aqueous solution method using poly-vinyl alcohol as a synthetic agent to investigate their structure and electrochemical properties. X-ray diffraction results indicated that the synthesized solid solutions showed a single phase without any detectable impurity phase and have a hexagonal structure with some additional peaks caused by monoclinic distortion, especially in the solid solutions with a low Co amount. In the electrochemical examination, the solid solutions in the range between 0.2  x  0.9 showed higher discharge capacity and better cyclability than LiCoO2 (x = 1) on cycling between 2.0 and 4.6 V with 100 mA g−1 at 25 °C. For example, Li(Li0.2Co0.4Mn0.4)O2 (x = 0.4) exhibited a high discharge capacity of 180 mA h g−1 at the 50th cycle. By synthesizing the solid solution between Li2MnO3 and LiCoO2, the electrochemical properties of the end members were improved.  相似文献   

13.
A laboratory study was conducted to determine the effect of three extraction parameters (soaking time, extraction time and the ratio of solid to liquid) on the yield and chemical composition of Foeniculum vulgare seeds essential oils. The bioactivity of the essential oil extracted for the optimum extraction parameters was assessed against Culex pipiens mosquito. F. vulgare essential oil composition included large amounts of phenylpropanoids. Through an extraction time of 6 h and a ratio solid to liquid of 300 g/L we can get over than 72% of trans-anethol without soaking the seeds. With bioassays, essential oils showed different activities on C. pipiens larvae and pupae. Results show that a concentration at 40 mg/L was sufficient to register 50% mortality for the second instars larvae and this, after 2 h exposition time. Moreover, concentration at 60 mg/L ensured after 4 h exposition time 90% mortality for the fourth instars larvae. However, pupae needed 24 h exposition time to show promising mortalities when using concentration at 200 mg/L. Even if laboratory bioassays are only the first step towards the use of essential oils in practical applications, these substances represent a potential alternative to chemical insecticides in some markets.  相似文献   

14.
For the first time in SnO2 based dye solar cells, here we report, efficiency exceeding 3% of the cells consisting with Indoline D-149 dye with unmodified SnO2 nano-crystallites. The cells sensitized with metal free D-149 dye together with liquid electrolyte comprising with 0.5 M tetrapropyl ammonium iodide and 0.05 M iodine in a mixture of acetonitrile and ethylene carbonate (1:4 by volume) delivered a short circuit current density of 10.4 mA cm?2 with an open circuit voltage of 530 mV under the illumination of 100 mW cm?2 (AM1.5) having an efficiency of 3.1%. As evident from the FTIR measurement, strong surface passivation of recombination centers of SnO2 crystallites due to the dual mode of attachment of dye molecules to the surface of SnO2 via both COOH and S–O direct bond might be the possible reason for this enhancement in these SnO2 based cells.  相似文献   

15.
The compound oryzanol available in the rice bran (oriza sativa) is well known for its antioxidant activity. Phase equilibrium data involving oryzanol in compressed fluids, hardly found in the literature, are important to provide the basis for the extraction and fractionation processes. In this sense, the aim of this work is to report phase equilibrium measurements for the system (γ-oryzanol + chloroform) in compressed propane. Phase equilibrium experiments were performed using the static synthetic method (cloud points transition data) in a high-pressure variable-volume view cell in the temperature range of 303 K to 353 K, pressures up to 17 MPa, for oryzanol overall mass fractions of 2 wt%, 5 wt% and 10 wt% in (propane + chloroform) mixtures. A complex phase behaviour comprising vapour–liquid, liquid–liquid, vapour–liquid–liquid, solid–liquid, solid–liquid–liquid, solid–liquid–liquid–vapour transitions were visually observed for the system studied.  相似文献   

16.
FTIR spectroscopy was used to study poly(ethylene oxide), PEO, irradiated in solid and molten aggregate states and as aqueous solutions of various concentrations. The changes in shape and width of –C–O–C– complex absorption intensities at around 1112 cm?1 were the most prominent. On irradiation of solid samples in contact with air shrinking of –C–O–C– complex and increase in its absorption intensities indicated predominant degradation. Crosslinking prevailed on irradiation of molten PEO and of its aqueous solutions in nitrogen atmosphere and manifested itself as widening of –C–O–C– absorption and decrease of corresponding intensities. Partial or complete merging of CH2 wagging vibrations at 1342 cm?1 and 1360 cm?1 that are characteristic of crystalline PEO into a single absorption at around 1350 cm?1 indicated amorphization what was observed for samples that had reduced degree of crystallinity determined by differential scanning calorimetry. DSC could not discriminate between degradation and crosslinking while the changes in width and shape of –C–O–C– complex were independent of the changes in crystallinity. Comparison of FTIR spectra of the same PEO samples obtained as thin film and as KBr pellets revealed that pellet preparation results in a number of spectral artefacts.  相似文献   

17.
《Microchemical Journal》2009,91(2):107-112
A simple and powerful microextraction technique was used for determination of cadmium in water samples using liquid phase microextraction (LPME) followed by graphite furnace atomic absorption spectrometry (GF-AAS). In a preconcentration step, cadmium was extracted from a 2 mL of its aqueous sample in the pH = 6 as cadmium-2-(5-bromo-2-pyridylazo)-5-diethylaminophenol (5-Br-PADAP) cationic complex into a 4 µL drop of nitrobenzene and ammonium tetraphenylborate as counter ion. In the drop, the cadmium-2-(5-bromo-2-pyridylazo)-5-diethylaminophenol (5-Br-PADAP) ammonium tetraphenylborate ion associated complex was formed. After extraction, the microdrop was retracted and directly transferred into a graphite tube modified by [Pd(c) + Pd(i)]. Some effective parameters on extraction and complex formation, such as type and volume of organic solvent, pH, concentration of chelating agent and counter ion, extraction time and stirring rate were optimized. Under the optimum conditions, the enrichment factor and recovery were 390 and 78%, respectively. The calibration graph was linear in the range of 0.01–1 µg L 1 with correlation coefficient of 0.9952 under the optimum conditions of the recommended procedure. The detection limit based on the 3Sb criterion was 0.0065 µg L 1 and relative standard deviation (RSD) for eight replicate measurements of 0.1 µg L 1 and 0.4 µg L 1 cadmium was 6.4 and 5.8% respectively. The characteristic concentration was 0.0014 µg L 1 equivalent to a characteristic mass of 5.6 fg. In order to evaluate the accuracy and recovery of the presented method the procedure was applied to the analysis of reference materials and seawater.  相似文献   

18.
N,N-Dialkylamides (monoamides) are known as extractants for U and Pu, and many studies have been carried out mainly by single-stage batch method. We have focused on two monoamides: N,N-di(2-ethylhexyl)-2,2-dimethylpropanamide (DEHDMPA) and N,N-di(2-ethylhexyl)butanamide (DEHBA), and proposed a multistage extraction process for recovering U and Pu by these monoamides. A continuous counter-current experiment was carried out to demonstrate the validity of this process. This process consisted of two cycles, and the 1st cycle and the 2nd cycle employed DEHDMPA and DEHBA as extractants, respectively. The feed solution for the 1st cycle was 5.1 mol/dm3 (M) nitric acid containing 0.92 M U, 1.6 mM Pu, and 0.6 mM Np. The raffinate collected in the 1st cycle was used as the feed for the 2nd cycle. The ratios of U recovered in the U fraction and U-Pu fraction were 99.1% and 0.8%, respectively, and the ratios of U in the used solvents were <0.04%. The ratio of Pu recovered in the U-Pu fraction was 99.7%, and the ratio of Pu in the used solvents was in the order of 10–3–10–4%. The concentration ratio of U with respect to Pu in the U-Pu fraction was 9, and this indicated that Pu was not isolated. The decontamination factor of U with respect to Pu in the U fraction was obtained as 4.5×105. These results supported the validity of the proposed process.  相似文献   

19.
We report the synthesis and electrophosphorescent behavior of a series of novel iridium complex materials (Complexes A–F), which are composed of ligands bearing polyphenylphenyl dendron groups and acetylacetonate. Yellow to saturated red organic light-emitting diodes (OLEDs) based on these newly developed Ir complexes were fabricated through solution process by doping the complex materials into polyvinyl carbazole (PVK)/2-(4-biphenylyl)-5-(4-tert-butylphenyl)-1,3,4-oxadiazole (PBD) matrices. The emission wavelengths of the materials could be effectively tuned from 549 nm to 640 nm by changing the conjugation of the ligands either through incorporating additional aromatic segment (e.g. phenyl or fluorenyl group) onto the basic dendron ligand or fusing two of the phenyl rings on the polyphenylphenyl dendron group. High performance devices with the configuration of ITO/poly(3,4-ethylenedioxythiophene):poly(styrenesulfonic acid) (PEDOT:PSS) (50 nm)/PVK:PBD (40%):Ir complex (6%) (70 nm)/2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP) (12 nm)/Alq3 (20 nm)/Mg:Ag (150 nm) have been demonstrated. For example, when Complex B was used as the emissive layer, maximum current efficiency of 34.0 cd/A and external quantum efficiency of 10.3% have been achieved. When 1,3,5-tris(N-phenylbenzimidazol-2-yl) benzene (TPBI) was used as the block layer, the efficiencies can be further improved to 46.3 cd/A and 13.9%, respectively. These solution processed OLED devices demonstrated quite stable EL efficiencies over a large range of current density, which indicated that triplet–triplet annihilation in electrophosphorescence could be effectively suppressed by incorporation of the polyphenylphenyl dendron structure into iridium complexes.  相似文献   

20.
《Comptes Rendus Chimie》2014,17(5):454-458
The steam reforming of methane over Cu/Co6Al2 mixed oxides with different copper contents was studied. The Co6Al2 support was prepared via the hydrotalcite route. It was thermally stabilized at 500 °C, impregnated with 5 wt.%, 15 wt.% or 25 wt.% copper using copper (II) nitrate Cu(NO3)2·3H2O precursor and then calcined again at 500 °C under an air flow. The impregnation of copper enhanced significantly the reactivity of the solids in the considered reaction. The 5Cu/Co6Al2 solid was the most reactive one, with a methane conversion of 96% at 650 °C. The selectivities of H2 and CO2 were also better for the catalyst containing 5 wt.% copper compared to higher copper loadings. The decrease in the catalytic reactivity with increasing the copper content was attributed to the formation of agglomerated and less reactive CuO species, which were detected by XRD and TPR analyses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号