首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 287 毫秒
1.
Blends of styrene butadiene rubber (SBR) with varying loading degree from 60 wt% to 100 wt% of carboxymethylcellulose (CMC) have been prepared. Gamma radiation vulcanization of prepared blends was carried out with doses varying between 50 kGy and 250 kGy. Mechanical properties, namely, tensile strength (Ts), elongation at break (Eb) and hardness were followed up as a function of loading degree of CMC and gamma irradiation dose. Moreover, physical properties, specifically swelling number (SN) and gel fraction % (GF%) were undertaken. Results obtained showed an improvement in mechanical as well as in physical properties with increasing either CMC content or dose of irradiation. Thermal properties namely thermo gravimetric analysis (TGA) was carried out.  相似文献   

2.
In this study, thermal and mechanical properties of novel nanocomposite, epoxy resin reinforced with octadecylamine functionalized graphene oxide (GO-ODA) and Sasobit, prepared via creative vacuum shock technique, were investigated. By introducing 1, 3 and 5 wt% Sasobit to the neat epoxy resin, the tensile strength increased remarkably by 104%, 315% and 266%, respectively due to the unique stiff and crystalline structure of Sasobit. In addition, considerable enhancement of 125% in Young's modulus, 351% in toughness, 562% in impact resistance, ~19 °C in thermal stability and ~7 °C in glass transition temperature of epoxy resin with 3 wt% Sasobit loading was demonstrated. The composite containing 3 wt% Sasobit alone, were found to have even superior properties than GO-ODA/epoxy nanocomposite, as surprisingly 3, 2.9, 2.2 and 2 times more improvement, respectively in tensile strength, toughness, impact strength and thermal stability of epoxy resin compared to reinforcement with GO-ODA were obtained.  相似文献   

3.
Poly(trimethylene terephthalate) (PTT) and a liquid crystalline polymer, Vectra A950 (VA), were melt-blended and subjected to capillary rheometry. Effects of VA content, shear rate and temperature on viscosity and flow activation energy (Ea) were investigated. Partial fibrillation was found even though the viscosity ratio was greater than one, leading to the formation of in-situ composites. Thermal and thermogravimetric analysis of the blends suggested that they were immiscible and their thermal stabilities were enhanced. From tensile tests, the incorporation of VA improved tensile modulus, slightly decreased tensile strength, and drastically lowered elongation at break, compared to neat PTT. It was found that the blend with the best VA dispersion can be achieved at the minimum VA content (10 wt%) and lowest processing temperature (250 °C). Not only did this blend exhibit improved mechanical properties comparable to those of blends processed at temperatures closer to the crystalline-to-nematic transition of VA (~280 °C), it also shows enhanced processibility through the reduction of both melt viscosity and Ea.  相似文献   

4.
Carbon/carbon (C/C) composites with PyC/TaC/PyC or PyC/SiC/TaC/PyC multi-interlayers were prepared by isothermal chemical vapor infiltration, followed by Furan resin impregnation and carbonization. Microstructures, mechanical properties including flexural strength, ductile displacement, and fracture behaviors of composites were studied. Furthermore, composites were heat treated at 2000 °C to study the effects of heat treatment on mechanical properties and fracture behaviors. PyC/TaC/PyC and PyC/SiC/TaC/PyC multi-interlayers have been deposited uniformly in C/C composites. With the introduction of PyC/TaC/PyC multi-interlayers in C/C composites, the flexural strength decreases; however, the ductile displacement increases. The fracture behavior changes from brittleness (0% TaC) to pseudo-ductility (5% TaC) and high toughness (10% TaC). When PyC/SiC/TaC/PyC multi-interlayers are introduced in C/C composites, the flexural strength is improved remarkably from 270 MPa to 522 MPa, but the ductile displacement decreases obviously from 0.49 mm to 0.24 mm, and the fracture behavior becomes brittle again. After heat treatment at 2000 °C, the flexural strength decreases, but the ductile displacement increases and pseudo-ductility or high toughness can be obtained.  相似文献   

5.
Mechanical blends formed of 50 wt% of high-density polyethylene (HDPE) and 50 wt% of ethylene–propylene–diene-monomer (EPDM) elastomer have been loaded with 50 wt% of three different particle size of CaCO3, namely CaCO3 300, CaCO3 700, and CaCO3 2000 whereby the latter has the smallest particle size of ~311, 82 μm. Mechanical, physico-chemical and thermal properties were followed up as a function of irradiation dose for loaded and unloaded blends. The results obtained indicated that the values of tensile strength, tensile modulus at 50% elongation, gel fraction and decomposition temperature increase with increasing irradiation dose. On the other hand elongation at break, permanent set and swelling number were found to decrease with increasing irradiation dose. Moreover, the effect of particle size of CaCO3 was observed in a limited but apparent upgrading of mechanical, physico-chemical, and thermal properties. The order of semi-reinforcing capacity of three different types of CaCO3 is as follow: CaCO3 2000 > CaCO3 700 > CaCO3 300 > unloaded blend. Whereby CaCO3 2000 has the smallest particle size.  相似文献   

6.
The aim of this article was to determine and compare the influence of trimethylopropane trimethacylate (TMPTA) and trially isocyanurate (TAIC) crosslinking agents on thermal and mechanical properties of electron beam irradiated polylactide (PLA). The blends were made of PLA mixed with 3 wt% of TMPTA (PLA/TMPTA), and PLA mixed with 3 wt% of TAIC (PLA/TAIC). Injection moulded samples were irradiated with the use of high energy (10 MeV) electron beam at various radiation doses to crosslinking PLA macromolecules. Thermal and mechanical properties were investigated by means of differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), tensile strength, and impact strength measurements. The samples were also characterized by Fourier transform infrared spectroscopy (FTIR). It was found that under the influence of electron irradiation PLA/TMPTA samples underwent degradation while PLA/TAIC samples became crosslinked. Tensile and impact strengths of PLA/TMPTA samples decreased with increasing radiation dose while an enhancement of these properties for PLA/TAIC samples was observed.  相似文献   

7.
The NaOH-urea solvent system was applied for solubilization of hemicelluloses in corn pericarp (CP), an industrial waste of corn starch production, and the mechanical properties of films prepared from the isolated hemicelluloses were analyzed. CP was soaked in 0-8 wt% NaOH solutions containing 0-8 M urea, and the mixtures were frozen at -20 °C and thawed. By a simple recovery of the thawed solutions by filtration hemicelluloses were found to be solubilized efficiently above 2 wt% NaOH. The results of sugar compositional analysis indicate that the extracted materials were mixtures of hemicelluloses composed of arabinoxylan and β-(1,3;1,4)-glucan having arabinose/xylose ratios of 0.84-0.72. The present results indicated that NaOH solutions containing urea, with concentrations not enough to solubilize cellulose were adequate for extraction of hemicelluloses in CP. The hemicellulose extracted with 2 wt% NaOH-6 M urea could form transparent films whose mechanical properties were 56.2 MPa, 3.5% and 3.09 GPa for breaking stress (σmax), maximum strain (ɛmax) and elastic modulus (E), respectively, as evaluated by tensile tests. These values were 1.2-, 1.3- and 0.94-fold higher than those obtained by the film of arabinoxylan alone. Results suggest that β-glucan gives mechanical strength and flexibility to the stiff arabinoxylan films.  相似文献   

8.
Graphene oxide was reduced into reducing-graphene oxide (r-GO) successfully using gallic acid (GA) as a green reducing agent. Biobased gallic acid epoxy resin (GAER) was synthesized from renewable GA, and the biobased GAER/r-GO nanocomposites and glass fiber-reinforced composites were prepared with succinic anhydride as a curing agent. The dynamic mechanical, thermal, and mechanical properties of the composites with varying r-GO contents were characterized. When the content of r-GO was 0.5 wt%, the glass transition temperature was 10.4°C higher than the pure resin system. The thermal and mechanical properties were increased with increasing r-GO content; when the r-GO content was 1.0 wt%, the initial degradation temperature was enhanced by approximately 6.8°C, the tensile and impact strengths were 34.5% and 49.1% higher, respectively, than the pure cured GAER. The impact strength of GAER was higher than that of the bisphenol A epoxy resin/SUA curing system, but the tensile strength was lower than it.  相似文献   

9.
The improvement of mechanical properties and toughness of nanoparticles for epoxy composites was mostly dependent on the disperse state of nanoparticles in epoxy matrices. When the content of nanoparticles was higher than a threshold value, it was easy to aggregate and then affect the improvement effect. Pickering emulsion was prepared using SiO2 nanoparticles as emulsifier and functional monomer as oil phase. The influence of Pickering emulsion on the curing process was investigated. The effect of Pickering emulsion on the mechanical properties, toughness, and glass transition temperature (Tg) was studied. Impact and tensile fracture surface were observed by scanning electron microscopy (SEM). Results from differential scanning calorimeter (DSC), tensile, impact, and fracture toughness tests are provided. The results indicated that the introduction of Pickering emulsion can eliminate the residual stress and accelerate curing reaction. Epoxy composites were capable of increasing tensile strength by up to 29.9%, impact strength of three‐fold, fracture toughness of 35%, and Tg of 20.7°C in comparison with the reference sample. SEM images showed that SiO2 nanoparticles exhibit a good dispersion in epoxy matrix. The increases in mechanical properties, toughness, and Tg of epoxy composites were attributed to the “Second Phase Toughness” mechanism.  相似文献   

10.
An intercrosslinked network of cyanate ester (CE)-bismaleimide (BMI) modified epoxy matrix system was made by using epoxy resin, 1,3-dicyanatobenzene and bismaleimide (N,N-bismaleimido-4,4-diphenyl methane) with diaminodiphenylmethane as curing agent. BMI-CE-epoxy matrices were characterised using differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and heat deflection temperature (HDT) analysis. The matrices, in the form of castings, were characterised for their mechanical properties such as tensile strength, flexural strength and unnotched Izod impact test as per ASTM methods. Mechanical studies indicated that the introduction of cyanate ester into epoxy resin improves the toughness and flexural strength with reduction in tensile strength and glass transition temperature, whereas the incorporation of bismaleimide into epoxy resin influences the mechanical and thermal properties according to its percentage content. DSC thermograms of cyanate ester as well as BMI modified epoxy resin show an unimodal reaction exotherm. Electrical properties were studied as per ASTM method and the morphology of the BMI modified epoxy and CE-epoxy systems were studied by scanning electron microscope.  相似文献   

11.
Graphene oxide (GO)/epoxy composites cured by aliphatic dibasic acids have been prepared. The influences of structure of aliphatic dibasic acid and loading of GO on curing process and mechanical properties of epoxy composites were studied. The results show that the reaction activities, gel time of corresponding epoxy-acid system and tensile strength of the formed epoxy resins decrease with the increase of the chain length of aliphatic dibasic acids. Both fracture toughness (>1.96 MPa⋅m1/2) and elongations at break (>6%) increase with the increase of the chain length of aliphatic dibasic acids. The introduction of GO is helpful to increase the mechanical properties and the gas transmission coefficient of GO/epoxy composites. A maximum of tensile strength and elongations at break were obtained when the loading of GO is 0.6 wt%. The gas transmission coefficient of GO/epoxy composite increases with the increase of GO loading. The excellent mechanical properties and gas leakage resistance coefficient of the formed epoxy composites provides potential application in many fields where conventional brittle epoxy resins are inapplicable.  相似文献   

12.
Electron beam (e-beam) curing is a technology that offers advantages over the thermal curing process, that usually requires high temperature and are time-consuming. E-beam curing is faster and occurs at low temperatures that help reduce residual mechanical stresses in a thermoset composite. The aim of the present study is to analyze the effects of cationic initiator (diaryliodonium hexafluoroantimonate) ranged from 1 to 3 wt% in DGEBA (diglycidyl ether of bisphenol A) epoxy resin when cured by a 1.5 MeV electron beam. The specimens were cured to a total dose of 200.4 kGy for 40 min. Analyses by dynamic mechanical thermal analysis (DMTA) and differential scanning calorimetry (DSC) show that the e-beam irradiated samples with 2 wt% cationic initiator were 96% cured obtained a glass transition temperature (tan δ) of 167 °C. The same epoxy resin, thermally cured for 16 h with an anhydride hardener, reached a Tg (tan δ) of 136 °C. So, the irradiated sample had its Tg increased approximately 20% and the curing process was much less time consuming.  相似文献   

13.
In this research, fully environment-friendly, sustainable and biodegradable ‘green’ composites were fabricated. A novel material comprised of microfibrillated cellulose and laponite clay with different inorganic/organic ratios (m/m) was prepared. The composites were characterized by tensile, bending and water absorption tests as well as dynamic mechanical analysis. The morphologies of these nanocomposites were evaluated through scanning electron microscopy. Results showed considerable improvement of mechanical properties; specifically in elastic modulus, tensile strength and flexural modulus with the addition of nanoclay up to 7.5 wt% nano-clay. The modulus of elasticity increased significantly by about 26 % at 5 wt% nanocaly. The flexural modulus increased by about 90 % at 7.5 wt% nanoclay. However, with an increased load of clay in the nanocomposite, the mechanical properties decreased due to the agglomeration of excessive nanoclay. The storage modulus was significantly increased at high temperature with increasing the load of nanoclay.  相似文献   

14.
Poly(carbonate urethane) (PCU), is a valuable commercial engineering polymer. In order to understand the possible use of PCU in radioactive waste management as a solidifying agent or as a disposal container, radiation stability of the PCU is studied by Co-60 gamma irradiations at two different dose rates of 1540 and 82.8 Gy/h. The total dose of irradiation was up to 6.24 MGy. Degradation nature was tested by studying the changes in mechanical and thermal properties with rate and total dose of irradiation. Ultimate tensile strength and toughness first increased and then decreased with the irradiation dose. Half value dose (HVD) for elongation was 4010 kGy and for tensile strength 6010 kGy at the dose rate of 1540 Gy/h. The non-irradiated PCU transparent color changed to yellow and then brown with increased irradiation dose. The FTIR spectral analysis showed a random scission of polymer with irradiation. From the experimental observation, it was shown that PCU can be used for embedding radioactive waste for about 300 years.  相似文献   

15.
The preparation of new layered double hydroxides/unsaturated polyester (LDH/UP) nanocomposites was performed and the effect of LDH on the resin properties was studied. Two different organo-LDHs have been prepared, adipate-LDH (A-LDH) and 2-methyl-2-propene-1-sulfonate-LDH (S-LDH); in order to evaluate the influence of these nanofillers, samples with two different concentrations were dispersed in the matrix. The physical, thermal, mechanical and fire reaction properties of nanocomposites were studied. Intercalated layered structures were observed for the different organo-LDH loadings (1 and 5 wt%). Mechanical properties studied under flexural tests show that incorporation of organo-LDH in the resin reduces the flexural strength of polyester resin while the flexural modulus is unchanged for the S-LDH/UP composites and increased with 1 wt% of A-LDH. Adding 1 wt% of A-LDH to the resin produces an important reduction on the flexural strength, but an increase of the flexural modulus. The study of fire reaction properties, using cone calorimeter, suggested a significant reduction in the UP flammability, by 46 and 32%, by incorporating 1 wt% of A-LDH and 5 wt% S-LDH, respectively. Mass loss curves show enhanced char formation with the different loads tested while the amount of evolved smoke remains quite unchanged.  相似文献   

16.
Nanocomposites of bacterial cellulose (BC) and poly(vinyl alcohol) (PVA) were prepared by cast-drying method as an easy way in producing nanocomposite films and to expand the use of BC. The contribution of PVA in nanocomposites was evaluated by measurement of cross-sectional surface, moisture uptake and mechanical properties. Morphological analysis shows that PVA covered a number of cellulosic fibres and formed denser material as a function of PVA addition. Based on the tensile test, the addition of PVA causes a very slight reduction compared with bacterial cellulose itself. The BC/PVA nanocomposites still have similar stiffness to BC with elongation at break less than 5%, while PVA film shows ductile properties with elongation at break more than 80%. On the other hand, the presence of BC fibres in the PVA matrix enhanced the tensile strength and the elastic modulus of pure PVA about two to three times, but it decreased the toughness of pure PVA. The highest tensile strength and elastic modulus of the nanocomposites are 164 MPa and 7.4 GPa, respectively at BC concentration of 64%. Increasing BC concentration is proportional to reducing moisture uptake of BC/PVA nanocomposites indicating that the existence of BC fibres inhibits moisture absorption.  相似文献   

17.
环氧树脂/液晶聚合物体系的形态、力学性能和热稳定性   总被引:29,自引:0,他引:29  
合成了一种端基含有活性基团的热致性液晶聚合物 (LCPU) ,用其改性环氧树脂CYD 12 8 4 ,4′ 二氨基二苯砜 (DDS)固化体系 ,对改性体系的冲击性能、拉伸性能、弯曲性能、弹性模量、断裂伸长率、玻璃化转变温度Tg、热失重温度TG与LCPU含量的关系进行了探讨 ,对不同种类液晶化合物改性CYD 12 8 DDS体系效果进行了比较 ,用扫描电镜 (SEM)研究了材料断面的形态结构 .结果表明 ,LCPU的加入可以使固化物的力学性能和热稳定性提高 ,改性后材料断裂面的形态逐渐呈现韧性断裂特征  相似文献   

18.
Hot-pressed zirconium diboride (ZrB2) matrix composites containing 0–30 vol% silicon carbide (SiC) whiskers have been investigated to determine the effect of composition (i.e. amount of SiC whiskers) on the microstructure, mechanical properties and thermal properties. With increasing SiC whisker volume contents, the flexural strength and fracture toughness of the composites were improved compared to those of monolithic ZrB2. Flexural strength increased from 629 MPa for pure ZrB2 to 767 MPa for ZrB2–30 vol%SiCw. Likewise, fracture toughness ranged from 5.4 to 7.1 MPa m1/2 over the same composition range. Specific heat capacity increased with SiC whisker addition, while thermal diffusivity and thermal conductivity decreased slightly with the increase of SiC whisker content.  相似文献   

19.
Poly(butyl acrylate) was prepared by the free radical polymerization of butyl acrylate as an initiator in the presence of 2,2′-Azoisobu-tyronitrile (AIBN) and the average molecular weight, polydispersity and thermal stability were evaluated. PLA and PBA were melt blended using a Haake Rheometer, and the light transmission, thermal properties, dynamic rheological properties, mechanical properties, phase morphology of blends and toughening mechanism were investigated. Dynamic rheology, SEM and DSC results show that the PLA is partial miscible with PBA. The PBA component improved the crystallization ability of PLA and the crystallinity of PLA increased with content of PBA (<15 wt.%). With the increase of PBA, the tensile strength and modulus of the blend decreased slightly while the elongation at break and toughness were dramatically increased. With the addition of PBA, the failure mode changes from brittle fracture of neat PLA to ductile fracture of the blend. Rheological results revealed the complex viscosity and melt elasticity of the blends decreased with increasing content of PBA and phase segregation occurred at loading above 11 wt.% PBA. UV–vis light transmittance showed that PLA/PBA blends with a high transparency, and the transmittance decreased with the amount of PBA.  相似文献   

20.
Due to outstanding mechanical properties, heat resistance, and relatively facile production, nanoclay reinforced epoxy composites (NCRE composites) have been suggested as candidate materials for use on external surfaces of spacecraft residing in the low Earth orbit (LEO) environment. The resistance of the NCRE composites to bombardment by atomic oxygen (AO), a dominant component of the LEO environment, has been investigated. Four types of samples were used in this study. They were pure epoxy (0 wt% nanoclay content), and NCRE composites with different loadings of nanoclay—1 wt%, 2 wt%, and 4 wt%. Etch depths decreased with increasing nanoclay content, and for the 4 wt% samples it ranged from 28% to 37% compared to that of pure epoxy. X-ray photoelectron spectroscopy (XPS) indicates that after AO bombardment, relative area of C-C/C-H peak decreased, while the area of the C-O, ketones peaks increased, and the oxidation degree of surfaces increased. New carbon-related component carbonates were detected on nanoclay containing composite surfaces. Scanning electron microscopy indicates that aggregates formed on nanoclay-containing surfaces after AO bombardment. The sizes and densities of aggregates increased with nanoclay content. The combined erosion depths, XPS and SEM results indicate that although all the studied surfaces got eroded and oxidized after AO bombardment, the nanoclay containing composites showed better AO resistance compared to pure epoxy, because the produced aggregates on surface potentially act as a physical “shield”, e ectively retarding parts of the surface from further AO etching.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号