首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The extraction behavior of Pu(III), Pu(IV), Np(IV) and Np(V) with di(chlorophenyl)-dithiophosphinic acid (DCPDTPA) in toluene from nitric acid solutions was studied systematically. In aqueous solution with high nitric acid concentration, the extraction capability (represented by distribution ratio D) for Pu and Np in different valences with DCPDTPA comes as D Np(IV) > D Pu(IV) > D Np(V) > D Pu(III). A new radiochemical procedure for Np/Pu separation based on DCPDTPA extraction was proposed and tested with simulated samples. The recoveries of Np and Pu are as high as 80 % after the whole separation procedure, with the decontamination factor of trivalent lanthanide fission product element (e.g. Eu) greater than 1.5 × 104. The decontamination factor of Pu–Np is 2.0 × 103, while the decontamination factor of Np–Pu is greater than 4.8 × 103 after additional purification.  相似文献   

2.
A simple, rapid, cost-efficient, and robust method for separation of 237Np with an extraction chromatographic column (TOA: tri-n-octylamine on Teflon powder) is outlined in detail and further improved for direct ICP-MS analysis. The column efficiently retained 237Np in 2 mol L(-1) HNO3 medium and all of the 237Np was easily eluted with 0.02 mol L(-1) oxalic acid in 0.16 mol L(-1) HNO3 at 95 degrees C. The separated solutions were free from most matrix elements and were aspirated into the ICP-MS directly. The decontamination factor for 238U is more than 10(4). The instrumental detection limit for 237Np was 0.46 pg mL(-1), which corresponds to 1.2 x 10(-5) Bq mL(-1). The method is more rapid than traditional radiometric techniques. It is also considered to be more suitable for environmental monitoring than existing methods based on TOA.  相似文献   

3.
A new method for the determination of (237)Np and Pu isotopes in large soil samples has been developed that provides enhanced uranium removal to facilitate assay by inductively coupled plasma mass spectrometry (ICP-MS). This method allows rapid preconcentration and separation of plutonium and neptunium in large soil samples for the measurement of (237)Np and Pu isotopes by ICP-MS. (238)U can interfere with (239)Pu measurement by ICP-MS as (238)UH(+) mass overlap and (237)Np via (238)U peak tailing. The method provides enhanced removal of uranium by separating Pu and Np initially on TEVA Resin, then transferring Pu to DGA resin for additional purification. The decontamination factor for removal of uranium from plutonium for this method is greater than 1×10(6). Alpha spectrometry can also be applied so that the shorter-lived (238)Pu isotope can be measured successfully. (239) Pu, (242)Pu and (237)Np were measured by ICP-MS, while (236)Pu and (238)Pu were measured by alpha spectrometry.  相似文献   

4.
A sensitive, rapid and selective method for the determination of237Np in urine is described. Neptunium(IV) is isolated by batch-extraction with a slurry of Microthene-710 (microporous polyethylene) supporting a cyclohexane solution of tri-n-octylphosphine oxide, the slurry is transferred into a column and neptunium eluted by oxidation to Np(V) with a mixture of HCl+Cl2. After electroplating on a stainless steel disc, neptunium is counted with a solid-state alpha-detector. The final recovery is 83.2%; the decontamination factors are sufficiently high and the sensitivity limit is suitable for radiotoxicological purposes.  相似文献   

5.
A new method that allows rapid preconcentration and separation of plutonium and neptunium in water samples was developed for the measurement of 237Np and Pu isotopes by inductively-coupled plasma mass spectrometry (ICP-MS) and alpha spectrometry. 238U can interfere with 239Pu measurement by ICP-MS as 238UH+ mass overlap and 237Np via peak tailing. The method provide enhanced removal of uranium by separating Pu and Np initially on TEVA Resin, then moving Pu to DGA resin for additional removal of uranium. The decontamination factor for uranium from Pu is almost 100,000 and the decontamination factor for U from Np is greater than 10,000. This method uses stacked extraction chromatography cartridges and vacuum box technology to facilitate rapid separations. Preconcentration is performed using a streamlined calcium phosphate precipitation method. Purified solutions are split between ICP-MS and alpha spectrometry so that long and short-lived Pu isotopes can be measured successfully. The method allows for simultaneous extraction of 20 samples (including QC samples) in 4?C6 h, and can also be used for emergency response. 239Pu, 242Pu and 237Np were measured by ICP-MS, while 236Pu, 238Pu, and 239Pu were measured by alpha spectrometry.  相似文献   

6.
Some analytical applications of neotridecanohxdroxamic acid used as stationary phase in extraction chromatography columns are reported. Separations of Am-U-Th and Np-Pu are obtained in aqueous solutions and under different experimental conditions. The hydroxamic acid shows a peculiar selectivity for Np(IV) and Pu(IV) at pH=0, and the two elements can be separated according to their respective valencies. A selective method for the determination of237Np and239Pu in urine is also described. The final recoveries are 73.5% for plutonium and 82.3% for neptunium, the decontamination factors and the sensitivity limits are suitable for the radiotoxicological detection of both elements.  相似文献   

7.
A method was developed for isolating neptunium from Pu, U or mixed oxide (MOX) samples and its determination by isotope dilution -spectrometry (IDGS) using239Np (243Am) as a spike. Extraction chromatography with trilaurylamine fixed on a SGX-C18 support was used for the isolation of Np. The decontamination factors for U, Pu, Am and Pa vary between 1000–2000 and 100, respectively. The average separation yield of Np is (95±3)%. The amount of243Am required for spiking is about 0.2–0.3 g. It is recommended to use the pair of -rays 86.53 keV (237Np)-106.13 keV (239Np) for the assay of neptunium. A relative uncertainty of 4% or better is achievable in the analysis of plutonium samples, containing 0.4–80 g neptunium. The detection limit, under the proposed experimental conditions, is about 0.05 g Np. The results were compared with the results obtained by using high resolution -spectrometry (HRGS).  相似文献   

8.
This paper describes a novel strategy for actinide separation by extraction chromatography with Np(III) valence adjustment. Neptunium(IV) was reduced to Np(III) using Cr(II) and then selectively separated from uranium (IV) on a TEVA resin. After elution, Np(III) was retained on a DGA resin in order to remove any detrimental chromium impurities. Neptunium(III) formation was demonstrated by the complete and selective elution of Np from TEVA resin (99 ± 7%) in less than 12 mL of 9 M HCl from U(IV) (0.7 ± 0.7%). It was determined by UV–visible and kinetic studies that Cr(II) was the only species responsible for the elution of Np(IV) as Np(III) and that the Cr(II) solution could be prepared from 2 to 30 min before its use without the need of complex degassing systems to prevent the oxidation of Np(III) by oxygen. The methodology proposed here with TEVA/DGA resins provides removal of Cr(III) impurities produced at high decontamination factors (2.8 × 103 and 7.3 × 104 respectively).  相似文献   

9.
A new method for the determination of transuranium elements, Np, Pu and Am with extraction-liquid scintillation counting has been studied systematically. Procedures for the separation of Pu and Am by HDEHP-TRPO extraction and for the separation of Np by TTA-TiOA extraction have been developed, by which the recovery of Np, Pu and Am is 97%, 99% and 99%, respectively, and the decontamination factors for the major fission products (90Sr,137Cs etc.) are 104–106. Pulse shape discrimination (PSD) technique has been introduced to liquid scintillation counting, by which the counting efficiency of -activity is >99% and the rejection of -counts is >99.95%. This new method, combining extraction and pulse shape discrimination with liquid scintillation technique, has been successfully applied to the assay of Np, Pu and Am in high level radioactive waste.  相似文献   

10.
The radiolytic reactions of neptunium ions in aqueous carbonate, alkaline carbonate, and bicarbonate solutions were examined. It was found that Np(VI) is not oxidized to Np(VII) in carbonate and bicarbonate solutions saturated with nitrous oxide, whereas this oxidation process takes place in alkaline carbonate solutions, in which Np(VI) occurs as a hydroxo complex. It was also found that Np(V) is a radiation-stable neptunium species in carbonate solutions, whereas Np(VI) is stable in bicarbonate solutions.  相似文献   

11.
A new hydrometallurgical grouped actinide extraction process has been developed to separate the transuranic actinide ions from dissolved spent fuel solution (after an initial uranium extraction cycle). This “EURO-GANEX” process is aimed towards the homogeneous recycling of plutonium and minor actinides in a future closed fuel cycle. The separation process is based on the co-extraction of actinides and lanthanides from aqueous nitric acid into an organic phase followed by selective co-stripping of actinides. A suitable organic phase has been formulated and distribution ratios determined for lanthanides, actinides and some problematic fission products under extraction and stripping conditions. The process flowsheet has been proven on surrogate feed solutions as well as with spent fast reactor fuel; excellent recoveries of the actinides and good decontamination factors from the lanthanides and other fission products were obtained. A variation on the EURO-GANEX flowsheet (the “TRU-SANEX” process) has now been designed to produce separate Pu+Np and Am+Cm products for heterogeneous recycling. Progress on underpinning process chemistry and safety studies as well as flowsheet tests are summarized.  相似文献   

12.
It is well known that ammunition containing depleted uranium (DU) was used by NATO during the Balkan conflict. To evaluate the origin of DU (the enrichment of natural uranium or the reprocessing of spent nuclear fuel) it is necessary to directly detect the presence of activation products ((236)U, (239)Pu, (240)Pu, (241)Am, and (237)Np) in the ammunition. In this work the analysis of actinides by alpha-spectrometry was compared with that by inductively coupled plasma mass spectrometry (ICP-MS) after selective separation of ultratraces of transuranium elements from the uranium matrix. (242)Pu and (243)Am were added to calculate the chemical yield. Plutonium was separated from uranium by extraction chromatography, using tri- n-octylamine (TNOA), with a decontamination factor higher than 10(6); after elution plutonium was determined by ICP-MS ((239)Pu and (240)Pu) and alpha-spectrometry ((239+240)Pu) after electroplating. The concentration of Pu in two DU penetrator samples was 7 x 10(-12) g g(-1) and 2 x 10(-11) g g(-1). The (240)Pu/(239)Pu isotope ratio in one penetrator sample (0.12+/-0.04) was significantly lower than the (240)Pu/(239)Pu ratios found in two soil samples from Kosovo (0.35+/-0.10 and 0.27+/-0.07). (241)Am was separated by extraction chromatography, using di(2-ethylhexyl)phosphoric acid (HDEHP), with a decontamination factor as high as 10(7). The concentration of (241)Am in the penetrator samples was 2.7 x 10(-14) g g(-1) and <9.4 x 10(-15) g g(-1). In addition (237)Np was detected at ultratrace levels. In general, ICP-MS and alpha-spectrometry results were in good agreement.The presence of anthropogenic radionuclides ((236)U, (239)Pu,(240)Pu, (241)Am, and (237)Np) in the penetrators indicates that at least part of the uranium originated from the reprocessing of nuclear fuel. Because the concentrations of radionuclides are very low, their radiotoxicological effect is negligible.  相似文献   

13.
Removal of uranium from contaminated carbon steel surfaces by chelation with hydroxycarboxylic acid has been tested as a cleaning process for decommissioning and decontaminating contaminated surfaces. Comparison of contaminated surfaces prior to decontamination with subsequently cleaned surfaces was done in order to study the effectiveness of this cleaning technique. This was accomplished using various spectroscopic techniques, including x‐ray photoelectron spectroscopy, synchrotron infrared microspectroscopy, Rutherford backscattering spectroscopy and scanning electron microscopy/energy‐dispersive spectroscopy. Mild carbon steel (1010) coupons were exposed to uranyl nitrate solution, which led to the formation of a lightly corroded surface. Some contaminated samples underwent further cyclic humidity treatment, during which additional corrosion took place. In this study, it was found that a citric acid–hydrogen peroxide–citric acid cleaning method successfully removed uranium in lightly corroded areas. However, the method but incompletely decontaminated some heavily corroded areas where more highly crystallized corrosion products are found or where complex surface structure can occlude contaminants. Use of complementary analytical techniques is essential to provide an accurate model of surface chemistry before and after decontamination. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

14.
A new chemical method based in two separation steps was developed to isolate235Np from uranium targets irradiated with charged particles. Neptunium and plutonium are separated from uranium and most of the fission products by ion exchange. Then, neptunium is isolated from plutonium and remaining contaminants by extraction chromatography with tributyl phosphate in hydrochloric acid solution. High decontamination was achieved.  相似文献   

15.
Electrochemical and complexation properties of neptunium (Np) are investigated in aqueous perchlorate and nitrate solutions by means of cyclic voltammetry, bulk electrolysis, UV-visible absorption, and Np L(III)-edge X-ray absorption spectroscopies. The redox reactions of Np(III)/Np(IV) and Np(V)/Np(VI) couples are reversible or quasi-reversible, while the electrochemical reaction between Np(III/IV) and Np(V/VI) is irreversible because they undergo structural rearrangement from spherical coordinating ions (Np(3+) and Np(4+)) to transdioxoneptunyl ions (NpO2(n+), n = 1 for Np(V) and 2 for Np(VI)). The redox reaction of the Np(V)/Np(VI) couple involves no structural rearrangement on their equatorial planes in acidic perchlorate and nitrate solutions. A detailed analysis on extended X-ray absorption fine structure (EXAFS) spectra suggests that Np(IV) forms a decaaquo complex of [Np(H2O)10](4+) in 1.0 M HClO4, while Np(V) and Np(VI) exist dominantly as pentaaquoneptunyl complexes, [NpO2(H2O)5](n+) (n = 1 for Np(V) and 2 for Np(VI)). A systematic change is observed on the Fourier transforms of the EXAFS spectra for all of the Np oxidation states as the nitrate concentration is increased in the sample, revealing that the hydrate water molecules are replaced by bidentate-coordinating nitrate ions on the primary coordination sphere of Np.  相似文献   

16.
A milking process is described for preparing 239Np from 243Am. The process includes the stabilization of Np(IV) with ascorbic acid, isolation of Np(IV) by extraction with TOPO/dodecane and stripping of Np with (NH4)2CO3. The yield amounts to 60%. During milking, about 2% of the 243Am ends up in the scrub which is collected and reprocessed together with the remaining feed after 25 operations using extraction chromatography.  相似文献   

17.
Literature data on distribution ratios (Dw) of Np(V) and Pa(V) for the AG1-X8 resin are scarce whereas those related on resin capacity factors (k′) values for TEVA, TRU and U/TEVA resins are absent. Therefore, batch extraction experiments for Pa(V) and Np(V) from HCl and HNO3 media were realized, at tracer scale, with AG1-X8 and EIChroM resins (TEVA, TRU and U/TEVA). Based on the new Dw and k′ values obtained in this study, a new protocol for Pa/Np separation has been developed leading to a better separation factor of 105 and a chemical yield of 97 ± 3% and 99 ± 1% for Pa and Np, respectively. A separation of 231Pa from uranium matrix was successfully tested.  相似文献   

18.
In this study, a flow-based electrochemical detection system coupled to a solid-phase extraction column was developed for the determination of neptunium in the presence of Pu(IV). Np(V) in the sample solution was completely oxidized to Np(VI) via electrolysis using a column electrode composed of carbon fibers. The column electrode effluent was then loaded onto a TEVA® column, and subsequently onto a UTEVA® column using 3 mol L?1 HNO3. Pu(IV) was retained on the TEVA column and separated from Np(VI), while Np(VI) was retained on the UTEVA column. Np(VI) was eluted from the UTEVA column with 0.01 mol L?1 HNO3 and then introduced directly into a flow-through electrolysis cell. An electrochemical amperometric method with a working potential of +0.1 V (vs. Ag/AgCl) was used to detect Np(VI). The current produced due to the reduction of Np(VI) was continuously monitored and recorded, and the Np concentration was calculated from the peak area. The relative standard deviation of 10 analyses was 2.4 % for an Np solution (0.50 mg L?1) containing 1.0 μg Np. The detection limit, which was determined to be three times the standard deviation, was 35 μg L?1 (70 ng Np).  相似文献   

19.
In order to remove U, Tc, and Np, which are positioning materials or target nuclides for transmutation, from the high-level radioactive waste, condition of co-extraction and sequential and sequential stripping of the nuclides wer studied by using 30 vol.% TBP. On the basis of the experiments ferformed on each element of U, Tc, and Np, a combination of co-extraction of U, Tc, Np Tc stripping Np stripping U stripping was suggested. To enhance the Np extraction yield, the electrolytic exidation of Np(V) was required at the co-extraction step. For the stripping of Tc 5M HNO3, of Np the electrolytic reduction of Np(VI) to Np(V), and of U 0.3M sodium carbonate were used. Phase ratios (O/A or A/O) were recommended to be of 2-3, for co-extraction and for stripping.  相似文献   

20.
A tetraphenylethene (TPE) derivative substituted with a sulfonyl‐based naphthalimide unit ( TPE‐Np ) was designed and synthesized. Its optical properties in solution and in the solid state were investigated. Photophysical properties indicated that the target molecule, TPE‐Np , possessed aggregation‐induced emission (AIE) behavior, although the linkage between TPE and the naphthalimide unit was nonconjugated. Additionally, it exhibited an unexpected, highly reversible mechanochromism in the solid state, which was attributed to the change in manner of aggregation between crystalline and amorphous states. On the other hand, a solution of TPE‐Np in a mixture of dimethyl sulfoxide/phosphate‐buffered saline was capable of efficiently distinguishing glutathione (GSH) from cysteine and homocysteine in the presence of cetyltrimethylammonium bromide. Furthermore, the strategy of using poly(ethylene glycol)–polyethylenimine (PEG‐PEI) nanogel as a carrier to cross‐link TPE‐Np to obtain a water‐soluble PEG‐PEI/ TPE‐Np nanoprobe greatly improved the biocompatibility, and this nanoprobe could be successfully applied in the visualization of GSH levels in living cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号