首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel, low-cost proton-conducting semi-IPN has been successfully prepared from PVA/PAMPS blends by incorporating poly(ethylene glycol)bis(carboxymethyl)ether (PEGBCME) as a novel plasticizer. Although, the polymer is based on a relatively low content of PAMPS as a component of ion conducting sites, the resulting semi-IPN exhibited high proton conductivity (0.1 S cm−1) at 25 °C, which afforded a higher power density of 51 mW cm−2 at 80 °C. A striking feature is that a long-term initial performance is achieved with a 130 h of stable fuel cell operation in DMFC mode due to effectively suppressed methanol crossover. This is a new record for a fully hydrocarbon membrane in DMFC, seeing that the PVA–PAMPS proton-conducting semi-IPNs are made simply of aliphatic skeletons.  相似文献   

2.
In this paper a single electrode supported direct methanol fuel cell (DMFC) is fabricated and tested. The novel architecture combines the elimination of the polymer electrolyte membrane (PEM) and the integration of the anode and cathode into one component. The thin film fabrication involves a sequential deposition of an anode catalyst layer, a cellulose acetate electronic insulating layer and a cathode catalyst layer onto a single carbon fibre paper substrate. The single electrode supported DMFC has a total thickness of 3.88 × 10?2 cm and showed a 104% improvement in volumetric specific power density over a two electrode DMFC configuration under passive conditions at ambient temperature and pressure (1 atm, 25 °C).  相似文献   

3.
Nonenzymatic glucose fuel cells were prepared by using a polymer electrolyte membrane and Pt-based metal catalysts. A fuel cell with a cation exchange membrane (CEM), which is often used for conventional polymer electrolyte fuel cells, shows an open circuit voltage (OCV) of 0.86 V and a maximum power density (Pmax) of 1.5 mW cm?2 with 0.5 M d-glucose and humidified O2 at room temperature. The performance significantly increased to show an OCV of 0.97 V and Pmax of 20 mW cm?2 with 0.5 M d-glucose in 0.5 M KOH solution when the electrolyte membrane was changed from a CEM to an anion exchange membrane (AEM). This is due to the superior catalytic activity for both glucose oxidation and oxygen reduction in alkaline medium than in acidic medium. The anodic reaction of the fuel cell can be estimated to be the oxidation of glucose to gluconic acid via a two-electron process under these experimental conditions. The crossover of glucose through an electrolyte membrane was negligibly small compared with methanol and may not represent a serious technical problem due to the cross-reaction.  相似文献   

4.
We present a proton exchange membrane fuel cell (PEMFC) manufacturing route, in which a thin layer of polymer electrolyte solution is spray-coated on top of gas diffusion electrodes (GDEs) to work as a proton exchange membrane. Without the need for a pre-made membrane foil, this allows inexpensive, fast, large-scale fabrication of membrane-electrode assemblies (MEAs), with a spray-coater comprising the sole manufacturing device. In this work, a catalyst layer and a membrane layer are consecutively sprayed onto a fibrous gas diffusion layer with applied microporous layer as substrate. A fuel cell is then assembled by stacking anode and cathode half-cells with the membrane layers facing each other. The resultant fuel cell with a low catalyst loading of 0.1 mg Pt/cm2 on each anode and cathode side is tested with pure H2 and O2 supply at 80 °C cell temperature and 92% relative humidity at atmospheric pressure. The obtained peak power density is 1.29 W/cm2 at a current density of 3.25 A/cm2. By comparison, a lower peak power density of 0.93 W/cm2 at 2.2 A/cm2 is found for a Nafion NR211 catalyst coated membrane (CCM) reference, although equally thick membrane layers (approx. 25 μm), and identical catalyst layers and gas diffusion media were used. The superior performance of the fuel cell with spray-coated membrane can be explained by a decreased low frequency (mass transport) resistance, especially at high current densities, as determined by electrochemical impedance spectroscopy.  相似文献   

5.
Direct methanol fuel cell (DMFC) consisting of a double-catalytic layered membrane electrode assembly (MEA) provide higher performance than that with the traditional MEA. This novel structured MEA includes a hydrophilic inner catalyst layer and a traditional electrode with an outer catalyst layer, which was made using both catalyst coated membrane (CCM) and gas diffusion electrode (GDE) methods. The inner catalyst was PtRu black on anode and Pt black on cathode. The outer catalyst was carbon supported Pt–Ru/Pt on anode and cathode, respectively. Thus in the double-catalytic layered electrodes three gradients were formed: catalyst concentration gradient, hydrophilicity gradient and porosity gradient, resulting in good mass transfer, proton and electron conducting and low methanol crossover. The peak density of DMFC with such MEA was 19 mW cm−2, operated at 2 M CH3OH, 2 atm oxygen at room temperature, which was much higher than DMFC with traditional MEA.  相似文献   

6.
The thin membrane of BaCe0.8Sm0.2O3−δ (BCS) with high quality was successfully fabricated on porous NiO–BCS anode substrate through a novel in situ reaction method. The key part of this method is to directly spray well-mixed suspension of BaCO3, CeO2 and Sm2O3 instead of pre-synthesized BCS ceramic powder on the anode substrate. After sintering at 1400 °C for 5 h, the extremely dense electrolyte membrane in the thickness of 10 μm is obtained. A single cell was assembled with La0.7Sr0.3FeO3−σ as cathode and tested with humidified hydrogen as fuel at 650 °C. The open circuit voltage (OCV) and maximum power density respectively reach 1.04 V and 535 mW/cm2. Interface resistance of cell under open circuit condition was also investigated.  相似文献   

7.
Novel anhydrous polymeric proton conductors have been prepared from perfluorosulfonic acid ionomer with polymer solvent as supplying proton pathway through the segmental motion of polymer chains for polymer electrolyte fuel cell (PEFC) application. Since the membranes do not contain liquid-state acid or solvent, the membranes may promise more stable performances during the operation of PEFC. The Nafion-based anhydrous proton conductors showed maximum proton conductivity of about 4.0 × 10?3 S cm?1 at 130 °C under anhydrous condition. The mechanical properties of the membranes were enhanced by introducing H+-doped TiO2 nanoparticles without the conductivity degradation. In addition, the electrochemical properties of the membrane electrode assembly (MEA) employing the anhydrous membrane as ionomer have been investigated, showing stable open circuit voltages (OCVs) over 0.9 V under non-humidified condition.  相似文献   

8.
Performance of MEMS-based DMFC is low, because graphite-based porous electrodes show poor compatibility with MEMS technology. Nanoimprint technology was adopted in this paper to prepare fine pattern on proton exchange membrane (PEM) in MEMS-based DMFC as a promising alternative to the graphite-based porous electrodes. Micro-convex with the diameter of about 600 nm and the height of 50–70 nm was prepared on Nafion® 117 membrane by the nanoimprint at 130 °C using silicon mold. Thick Pt film (20 nm) was deposited as catalyst directly on the nanoimprinted Nafion® 117 membrane. Then the Pt-coated PEM was sandwiched with micro-channeled silicon plates to form a micro-DMFC. With passively feeding of 1 M methanol solution and air at room temperature, the as-prepared cell had the open circuit voltage (OCV) of 0.74 V and the maximum power density of 0.20 mW/cm2. The measured OCV was higher than those (0.1–0.3 V) of the state-of-the-art MEMS-based DMFC with planar electrode and pure Pt catalyst.  相似文献   

9.
Arc ion plating(AIP) is applied to form Ti/(Ti,Cr)N/Cr N multilayer coating on the surface of 316 L stainless steel(SS316L) as bipolar plates for proton exchange membrane fuel cells(PEMFCs). The characterizations of the coating are analyzed by scanning electron microscopy(SEM) and X-ray diffraction(XRD). Interfacial contact resistance(ICR) between the coated sample and carbon paper is 4.9 m cm~2 under 150 N/cm~2,which is much lower than that of the SS316 L substrate. Potentiodynamic and potentiostatic tests are performed in the simulated PEMFC working conditions to investigate the corrosion behaviors of the coated sample. Superior anticorrosion performance is observed for the coated sample, whose corrosion current density is 0.12 μA/cm2. Surface morphology results after corrosion tests indicate that the substrate is well protected by the multilayer coating. Performances of the single cell with the multilayer coated SS316 L bipolar plate are improved significantly compared with that of the cell with the uncoated SS316 L bipolar plate, presenting a great potential for PEMFC application.  相似文献   

10.
A new concept of in situ pore generation to reduce water flooding in cathode catalyst layer (CCL) of polymer electrolyte membrane fuel cell (PEMFC) is proposed with the introduction of water soluble poly(ethylene glycol) (PEG) as a porogen to CCL based on sulfonated poly(ether ether ketone) (sPEEK). In this new type of CCL, PEG is directly removed by water produced during the cathode reaction. The new CCL exhibited much higher cell performance especially in mass transport limitation region compared to the pristine sPEEK-CCL. In addition, the presence of PEG in the new CCL lowered the glass transition temperature of the sPEEK binder, and it could improve the transference of catalyst layer onto the polymer electrolyte membrane.  相似文献   

11.
A novel single phase BaCe0.5Bi0.5O3 ? δ (BCB) was employed as a cathode material for a proton-conducting solid oxide fuel cell (SOFC). The single cell, consisting of a BaZr0.1Ce0.7Y0.2O3 ? δ (BZCY7)-NiO anode substrate, a BZCY7 anode functional layer, a BZCY7 electrolyte membrane and a BCB cathode layer, was assembled and tested from 600 to 700 °C with humidified hydrogen (~3% H2O) as the fuel and the static air as the oxidant. An open-circuit potential of 0.96 V and a maximum power density of 321 mW cm?2 were obtained for the single cell. A relatively low interfacial polarization resistance of 0.28Ω cm2 at 700 °C indicated that the BCB was a promising cathode material for proton-conducting SOFCs.  相似文献   

12.
The cathode electrode structure of the direct methanol fuel cell (DMFC) was improved by a novel catalyst ink preparation method. Regulation of the solvent polarity in the cathode catalyst ink caused increases in the electrochemical active surface (EAS) for the oxygen reduction reaction (ORR) as well as decreases in the methanol crossover effect. In a two-step preparation, agglomerates consisting of catalyst and Nafion ionomers were decreased in size, and polar groups in the ionomers formed organized networks in the cathode catalyst layer. Despite Pt catalysts in the cathode being only 0.5 mg cm? 2, the maximum power density of the improved membrane electrode assembly (MEA) was 120 mW cm? 2, at 3 M methanol, which was much larger than that of traditional MEA (67 mW cm? 2).  相似文献   

13.
The PdFe nanorods (PdFe-NRs) with tunable length were synthesized by an organic phase reaction of [Pd(acac)2] and thermal decomposition of [Fe(CO)5] in a mixture of oleyamine and octadecene at 160 °C. They show a better proton exchange membrane fuel cell (PEMFC) performance than commercial Pt/C in working voltage region of 0.80–0.65 V, due to their high intrinsic activity to oxygen reduction reaction (ORR), reduced cell inner resistance, and improved mass transport.  相似文献   

14.
Cobalt-free perovskite oxide La0.5Sr0.5Fe0.8Cu0.2O3  δ (LSFC) was applied as both anode and cathode for symmetrical solid oxide fuel cells (SSOFCs). The LSFC shows a reversible transition between a cubic perovskite phase in air and a mixture of SrFeLaO4, a K2NiF4-type layered perovskite oxide, metallic Cu and LaFeO3 in reducing atmosphere at elevated temperature. The average thermal expansion coefficient of LSFC in air is 17.7 × 10 6 K 1 at 25 °C to 900 °C. By adopting LSFC as initial electrodes to fabricate electrolyte supported SSOFCs, the cells generate maximum power output of 1054, 795 and 577 mW cm 2 with humidified H2 fuel (~ 3% H2O) and 895, 721 and 482 mW cm 2 with humidified syngas fuel (H2:CO = 1:1) at 900, 850 and 800 °C, respectively. Moreover, the cell with humidified H2 fuel demonstrates a reasonable stability at 800 °C under 0.7 V for 100 h.  相似文献   

15.
H2/O2 alkaline membrane fuel cell (AMFC) is evaluated by polarization curves and conductivity measurements to determine the performance limiting factors. The analysis of IR corrected polarization curves shows that at medium to high current region significant potential loss in AMFC is caused by low ionic conductivity of membrane and catalyst layer, and limitations from mass transport of water. In low to medium current region the severe performance loss is caused by low water concentration at catalyst surface due to insufficient water concentration in the fully humidified oxidant at ≤ 60 °C.  相似文献   

16.
A new donor–acceptor (D–A) conjugated polymer (PDTOF) containing 3,4-didodecyloxythiophene, fluorene and 1,3,4-oxadiazole units is synthesized by using Wittig reaction methodology. The synthesized polymer is characterized by 1H NMR, FTIR, GPC, and elemental analysis. The optical energy band gap of the polymer is found to be 2.42 eV as calculated from the onset absorption edge. The electrochemical studies of PDTOF reveal that, the HOMO and LUMO energy levels of the polymer are ?5.45 eV and ?3.58 eV, respectively. The polymer is thermally stable up to 320 °C. Polymer light-emitting diode devices are fabricated with a configuration of ITO/PEDOT: PSS/PDTOF/Al using PDTOF as the emissive layer. The electroluminescence (EL) spectrum of the device showed green emission with CIE coordinate values (0.34, 0.47). By current density–voltage characteristics, threshold voltage of the PLED device is found to be 6.5 V.  相似文献   

17.
The stability of Pt-based/C electrocatalysts used in proton exchange membrane fuel cell (PEMFC) systems is commonly evaluated via accelerated stress testing in half-cell configuration at temperature close to ambient (20  T  25 °C), and 100% relative humidity (liquid electrolyte). Those conditions are by far different from those encountered in PEMFC systems (solid electrolyte, 60  T  80 °C, 0  relative humidity ≤ 100%), and fail in reproducing the morphological changes and the performance losses encountered during real life. Here, using a high surface area Pt/C electrocatalyst, we show that the gap between half-cell and real PEMFC configurations can be bridged by considering the pronounced effect of the temperature. The accelerated stress tests (ASTs) conducted in liquid electrolyte at T = 80 °C more accurately reflect the changes in morphology and surface reactivity occurring in real PEMFC environment, and provide gain in time. Due to massive release of Ptz + ions in the electrolyte during ASTs performed at T = 80 °C, using fresh electrolyte is strongly recommended for correct determination of the oxygen reduction reaction (ORR) kinetics.  相似文献   

18.
Fourteen new organic molecules A1A4, B1B5, C1C4 and D and a series of transition metal(II) complexes (Ni1Ni9 and Pd1Pd2b) were synthesized and studied in order to characterize the hemilability of 2-(1H-imidazol-2-yl)pyridine and 2-(oxazol-2-yl)pyridine ligands (A1A4 = 2-R2-6-(4,5-diphenyl-1R1-imidazol-2-yl)pyridines, R1 = H or CH3, R2 = H or CH3; B1B5 = 1-R2-2-(pyridin-2-yl)-1R1-phenanthro[9,10-d]imidazoles/oxazoles, R1 = H or CH3, R2 = H or CH3; C1C4 = 2-(6-R2-pyridin-2-yl)-1H-imidazo/oxazo[4,5-f][1,10]phenanthrolines, R2 = H or CH3; D = 2-mesityl-1H-imidazo[4,5-f][1,10]phenanthroline). They were also used to study the substituent effects on the donor strengths as well as the coordination chemistries of the imidazole/oxazole fragments of the hemilabile ligands.All the observed protonation–deprotonation processes found within pH 1–14 media pertain to the imidazole or oxazole rings rather than the pyridyl Lewis bases. The donor characteristics of the imidazole/oxazole ring can be estimated by spectroscopic methods regardless of the presence of other strong N donor fragments. The oxazoles possessed notably lower donor strengths than the imidazoles. The electron-withdrawing influence and capacity to hinder the azole base donor strength of 4,5-azole substituents were found to be in the order phenanthrenyl (B series) > 4,5-diphenyl (A series) > phenanthrolinyl (C series). An X-ray structure of Ni5b gave evidence for solvent induced ligand reconstitution while the structure of Pd2b provided evidence for solvent induced metal–ligand bond disconnection.Interestingly, alkylation of 1H-imidazoles did not necessarily produce the anticipated push of electron density to the donor nitrogen. Furthermore, substituents on the 4,5-carbons of the azole ring were more important for tuning donor strength of the azole base. DFT calculations were employed to investigate the observed trends. It is believed that the information provided on substituent effects and trends in this family of ligands will be useful in the rational design and synthesis of desired azole-containing chelate ligands, tuning of donor properties and application of this family of ligands in inorganic architectural designs, template-directed coordination polymer preparations, mixed-ligand inorganic self-assemblies, etc.  相似文献   

19.
《Polyhedron》2005,24(16-17):2153-2159
The synthesis, X-ray structure and magnetic susceptibility of (2,5-dimethylpyrazine)copper(II) chloride (1), and the synthesis and magnetic susceptibility of (2,6-dimethylpyrazine)2copper(II) chloride (2), are reported. Compound 1 crystallizes in the space group P21/c as a coordination polymer of Cu(II) ions bridged by 2,5-methylpyrazine. The resulting chains are magnetically linked via short chloride–chloride contacts. The magnetic susceptibility responds as a uniform Heisenberg chain (2J/k = −20(5) K) with a phase transition to three dimensional order near 5 K. Susceptibility data for compound 2 show that the compound is a linear chain coordination polymer with the copper ions linked by bihalide bridges. A fit to the model for a uniform Heisenberg chain yields 2J = −22.7(2) K.  相似文献   

20.
Two new triphenylamine-based metal-free organic dyes (TPTDYE-1 and TPTDYE-2) containing 1-(2,6-diisopropylphenyl)-2,5-di(2-thienyl)pyrrole as a new π-conjugated chromophore were synthesized for dye-sensitized solar cell (DSSC) applications. TPTDYE-1 containing three donor groups around the acceptor group was found to show relatively narrow absorption band from 300 nm to 470 nm while TPTDYE-2 having extended π–π delocalization between the donor and acceptor group showed broad absorption band from 300 nm to 550 nm. The electrochemical studies indicate that the HOMO–LUMO energy gap of TPTDYE-1 is considerably wider than that of TPTDYE-2. The dye-sensitized solar cell performance of each dye was investigated, and the TPTDYE-2-sensitized cell was found to show a maximum monochromatic incident photon-to-current conversion efficiency (IPCE) of 75%, a short-circuit photocurrent density (Jsc) of 13.50 mA/cm2, an open-circuit voltage (Voc) of 0.72 V, and a fill factor (FF) of 0.69, corresponding to an overall conversion efficiency of 6.71% under simulated AM 1.5 irradiation (100 mW/cm2). Under the same condition the TPTDYE-1-sensitized cell showed the same IPCE value of 75% with a promising conversion efficiency of 6.00%, a Jsc of 11.11 mA/cm2, a Voc of 0.76 V, and a FF of 0.71.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号