首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
This paper considers the bi-level control of an M/G/1 queueing system, in which an un-reliable server operates N policy with a single vacation and an early startup. The server takes a vacation of random length when he finishes serving all customers in the system (i.e., the system is empty). Upon completion of the vacation, the server inspects the number of customers waiting in the queue. If the number of customers is greater than or equal to a predetermined threshold m, the server immediately performs a startup time; otherwise, he remains dormant in the system and waits until m or more customers accumulate in the queue. After the startup, if there are N or more customers waiting for service, the server immediately begins serving the waiting customers. Otherwise the server is stand-by in the system and waits until the accumulated number of customers reaches or exceeds N. Further, it is assumed that the server breaks down according to a Poisson process and his repair time has a general distribution. We obtain the probability generating function in the system through the decomposition property and then derive the system characteristics  相似文献   

2.
3.
This paper studies the operating characteristics of an M[x]/G/1 queueing system with N-policy and at most J vacations. The server takes at most J vacations repeatedly until at least N customers returning from a vacation are waiting in the queue. If no customer arrives by the end of the Jth vacation, the server becomes idle in the system until the number of arrivals in the queue reaches N. We derive the system size distribution at a random epoch and departure epoch, as well as various system characteristics.  相似文献   

4.
《Applied Mathematical Modelling》2014,38(21-22):5113-5125
This paper deals with the (p, N)-policy M/G/1 queue with an unreliable server and single vacation. Immediately after all of the customers in the system are served, the server takes single vacation. As soon as N customers are accumulated in the queue, the server is activated for services with probability p or deactivated with probability (1  p). When the server returns from vacation and the system size exceeds N, the server begins serving the waiting customers. If the number of customers waiting in the queue is less than N when the server returns from vacation, he waits in the system until the system size reaches or exceeds N. It is assumed that the server is subject to break down according to a Poisson process and the repair time obeys a general distribution. This paper derived the system size distribution for the system described above at a stationary point of time. Various system characteristics were also developed. We then constructed a total expected cost function per unit time and applied the Tabu search method to find the minimum cost. Some numerical results are also given for illustrative purposes.  相似文献   

5.
We consider a discrete time single server queueing system in which arrivals are governed by the Markovian arrival process. During a service period, all customers are served exhaustively. The server goes on vacation as soon as he/she completes service and the system is empty. Termination of the vacation period is controlled by two threshold parameters N and T, i.e. the server terminates his/her vacation as soon as the number waiting reaches N or the waiting time of the leading customer reaches T units. The steady state probability vector is shown to be of matrix-geometric type. The average queue length and the probability that the server is on vacation (or idle) are obtained. We also derive the steady state distribution of the waiting time at arrivals and show that the vacation period distribution is of phase type.  相似文献   

6.
This paper studies the operating characteristics of the variant of an M[x]/G/1 vacation queue with startup and closedown times. After all the customers are served in the system exhaustively, the server shuts down (deactivates) by a closedown time, and then takes at most J vacations of constant time length T repeatedly until at least one customer is found waiting in the queue upon returning from a vacation. If at least one customer is present in the system when the server returns from a vacation, then the server reactivates and requires a startup time before providing the service. On the other hand, if no customers arrive by the end of the J th vacation, the server remains dormant in the system until at least one customer arrives. We will call the vacation policy modified T vacation policy. We derive the steady‐state probability distribution of the system size and the queue waiting time. Other system characteristics are also investigated. The long‐run average cost function per unit time is developed to determine the suitable thresholds of T and J that yield a minimum cost. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

7.
This paper studies the operating characteristics of an M[x]/G/1 queueing system under a variant vacation policy, where the server leaves for a vacation as soon as the system is empty. The server takes at most J vacations repeatedly until at least one customer is found waiting in the queue when the server returns from a vacation. If the server is busy or on vacation, an arriving batch balks (refuses to join) the system with probability 1 − b. We derive the system size distribution at different points in time, as well as the waiting time distribution in the queue. Finally, important system characteristics are derived along with some numerical illustration.  相似文献   

8.
This paper studies the operating characteristics of an M[x]/G/1 queueing system under a modified vacation policy, where the server leaves for a vacation as soon as the system is empty. The server takes at most J vacations repeatedly until at least one customer is found waiting in the queue when the server returns from a vacation. We derive the system size distribution at different points in time, as well as the waiting time distribution in the queue. Further, we derive some important characteristics including the expected length of the busy period and idle period. This shows that the results generalize those of the multiple vacation policy and the single vacation policy M[x]/G/1 queueing system. Finally, a cost model is developed to determine the optimum of J at a minimum cost. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

9.
This paper examines an M[x]/G/1 queueing system with a randomized vacation policy and at most J vacations. Whenever the system is empty, the server immediately takes a vacation. If there is at least one customer found waiting in the queue upon returning from a vacation, the server will be immediately activated for service. Otherwise, if no customers are waiting for service at the end of a vacation, the server either remains idle with probability p or leaves for another vacation with probability 1 − p. This pattern continues until the number of vacations taken reaches J. If the system is empty by the end of the Jth vacation, the server becomes idle in the system. Whenever one or more customers arrive at server idle state, the server immediately starts providing service for the arrivals. Assume that the server may meet an unpredictable breakdown according to a Poisson process and the repair time has a general distribution. For such a system, we derive the distributions of important system characteristics, such as system size distribution at a random epoch and at a departure epoch, system size distribution at busy period initiation epoch, the distributions of idle period, busy period, etc. Finally, a cost model is developed to determine the joint suitable parameters (pJ) at a minimum cost, and some numerical examples are presented for illustrative purpose.  相似文献   

10.
The paper investigates the queueing process in stochastic systems with bulk input, batch state dependent service, server vacations, and three post-vacation disciplines. The policy of leaving and entering busy periods is hysteretic, meaning that, initially, the server leaves the system on multiple vacation trips whenever the queue falls below r (⩾1), and resumes service when during his absence the system replenishes to N or more customers upon one of his returns. During his vacation trips, the server can be called off on emergency, limiting his trips by a specified random variable (thereby encompassing several classes of vacation queues, such as ones with multiple and single vacations). If by then the queue has not reached another fixed threshold M (⩽ N), the server enters a so-called “post-vacation period” characterized by three different disciplines: waiting, or leaving on multiple vacation trips with or without emergency. For all three disciplines, the probability generating functions of the discrete and continuous time parameter queueing processes in the steady state are obtained in a closed analytic form. The author uses a semi-regenerative approach and enhances fluctuation techniques (from his previous studies) preceding the analysis of queueing systems. Various examples demonstrate and discuss the results obtained. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

11.
In this paper, we study an M/M/c queue with a three threshold vacation policy denoted by (e, d, N). With such a policy, the servers keep serving the customers until the number of idle servers reaches d and then e of d servers start taking a vacation together. These e servers keep taking vacations until the number of customers in the system is at least N at a vacation completion instant, then the e servers return to serve the queue again. Using the matrix analytic method, we obtain the stationary performance measures and prove the conditional stochastic decomposition properties for the waiting time and queue length. This model is a generalization of previous multi-server vacation models and offers a useful performance evaluation and system design tool in multi-task server queueing systems.  相似文献   

12.
We consider a single-server, two-phase queueing system with N-policy. Customers arrive at the system according to a Poisson process and receive batch service in the first phase followed by individual services in the second phase. If the system becomes empty at the moment of the completion of the second-phase services, it is turned off. After an idle period, when the queue length reaches N (threshold), the server is turned on and begins to serve customers. We obtain the system size distribution and show that the system size decomposes into three random variables. The system sojourn time is provided. Analysis for the gated batch service model is also provided. Finally we derive a condition under which the optimal operating policy is achieved.  相似文献   

13.
Tian  Naishuo  Zhang  Zhe George 《Queueing Systems》2002,40(3):283-294
We study a discrete-time GI/Geo/1 queue with server vacations. In this queueing system, the server takes vacations when the system does not have any waiting customers at a service completion instant or a vacation completion instant. This type of discrete-time queueing model has potential applications in computer or telecommunication network systems. Using matrix-geometric method, we obtain the explicit expressions for the stationary distributions of queue length and waiting time and demonstrate the conditional stochastic decomposition property of the queue length and waiting time in this system.  相似文献   

14.
This paper studies the vacation policies of an M/G/1 queueing system with server breakdowns, startup and closedown times, in which the length of the vacation period is controlled either by the number of arrivals during the vacation period, or by a timer. After all the customers are served in the queue exhaustively, the server is shutdown (deactivates) by a closedown time. At the end of the shutdown time, the server immediately takes a vacation and operates two different policies: (i) The server reactivates as soon as the number of arrivals in the queue reaches to a predetermined threshold N or the waiting time of the leading customer reaches T units; and (ii) The server reactivates as soon as the number of arrivals in the queue reaches to a predetermined threshold N or T time units have elapsed since the end of the closedown time. If the timer expires or the number of arrivals exceeds the threshold N, then the server reactivates and requires a startup time before providing the service until the system is empty. If some customers arrive during this closedown time, the service is immediately started without leaving for a vacation and without a startup time. We analyze the system characteristics for each scheme.  相似文献   

15.
Consider anM/M/1 queueing system with server vacations where the server is turned off as soon as the queue gets empty. We assume that the vacation durations form a sequence of i.i.d. random variables with exponential distribution. At the end of a vacation period, the server may either be turned on if the queue is non empty or take another vacation. The following costs are incurred: a holding cost ofh per unit of time and per customer in the system and a fixed cost of each time the server is turned on. We show that there exists a threshold policy that minimizes the long-run average cost criterion. The approach we use was first proposed in Blanc et al. (1990) and enables us to determine explicitly the optimal threshold and the optimal long-run average cost in terms of the model parameters.  相似文献   

16.
This paper considers a production system in which an early set-up is possible. The machine(server) is turned off when there are no units(customers) to process. When the accumulated number of units reaches m(<N), the operator starts a set-up that takes a random time. After the set-up, if there are N or more units waiting for processing, the machine begins to process the units immediately. Otherwise the machine remains dormant in the system until the accumulated number of units reaches N. We model this system by M/G/1 queue with early set-up and N-policy. We use the decomposition property of a vacation queue to derive the distribution of the number of units in the system. We, then, build a cost model and develop a procedure to find the optimal values of (m,N) that minimize a linear average cost.  相似文献   

17.
18.
A single server queue with Poisson arrivals and exponential service times is studied. The system suffers disastrous breakdowns at an exponential rate, resulting in the loss of all running and waiting customers. When the system is down, it undergoes a repair mechanism where the repair time follows an exponential distribution. During the repair time any new arrival is allowed to join the system, but the customers become impatient when the server is not available for a long time. In essence, each customer, upon arrival, activates an individual timer, which again follows an exponential distribution with parameter ξ. If the system is not repaired before the customer’s timer expires, the customer abandons the queue and never returns. The time-dependent system size probabilities are presented using generating functions and continued fractions.  相似文献   

19.
Zhang  Zhe George  Tian  Naishuo 《Queueing Systems》2001,38(4):419-429
This paper treats the discrete time Geometric/G/1 system with vacations. In this system, after serving all customers in the system, the server will take a random maximum number of vacations before returning to the service mode. The stochastic decomposition property of steady-state queue length and waiting time has been proven. The busy period, vacation mode period, and service mode period distributions are also derived. Several common vacation policies are special cases of the vacation policy presented in this study.  相似文献   

20.
Abstract

This article presents a perishable stochastic inventory system under continuous review at a service facility in which the waiting hall for customers is of finite size M. The service starts only when the customer level reaches N (< M), once the server has become idle for want of customers. The maximum storage capacity is fixed as S. It is assumed that demand for the commodity is of unit size. The arrivals of customers to the service station form a Poisson process with parameter λ. The individual customer is issued a demanded item after a random service time, which is distributed as negative exponential. The items of inventory have exponential life times. It is also assumed that lead time for the reorders is distributed as exponential and is independent of the service time distribution. The demands that occur during stock out periods are lost.The joint probability distribution of the number of customers in the system and the inventory levels is obtained in steady state case. Some measures of system performance in the steady state are derived. The results are illustrated with numerical examples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号